Advertisement

Folia Microbiologica

, Volume 42, Issue 3, pp 211–213 | Cite as

Enhancement of growth and antibiotic titre inCephalosporium acremonium induced by sesame oil

  • S. Paul
  • R. L. Bezbaruah
  • R. S. Prakasham
  • M. K. Roy
  • A. C. Ghosh
Papers

Abstract

The role of sesame oil as part of the carbon source on growth and cephalosporin C production byCephalosporium acremonium was studied in shake-flask fermentation. The growth and antibiotic production were maximum on the fifth and sixth day, respectively, irrespective of the presence of sesame oil. Sesame oil enhanced cephalosporin C production by 54%. Analysis of fatty acid profile indicated that C18∶1, C18∶2 and C18∶3 are the major fatty acids inC. acremonium. The percentage of C18∶2 was higher in the culture grown with sesame oil.

Keywords

NASH Fatty Acid Profile Methyl Oleate Major Fatty Acid Antibiotic Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezbaruah R.L., Pillai K.R., Gogoi B.K., Baruah J.N.: Effect of growth temperature and media composition on the fatty acid composition ofBacillus, stearothermophilus AN002Antonie van Leeuwenhoek 54, 37–45 (1988).PubMedCrossRefGoogle Scholar
  2. Demain A.L.: Biosynthesis of β-lactam antibiotics, pp. 189–228 inAntibiotics Containing the β-Lactam Structure, Vol. 1 (A.L. Demain, N.A. Solomon, Eds). Springer-Verlag, Berlin 1983.Google Scholar
  3. Mattil K.F., Norris F.A., Stirton A.J., Swern D.: Composition and characteristics of individual fats and oils, pp. 165–248 inBailey's Industrial Oil and Fat Products (D. Swern, Ed.). John Wiley & Sons, New York 1964.Google Scholar
  4. Nash C.H., III,Mehta R.J., Ball C.:Cephalosporium acremonium: A β-lactam antibiotic producing microbe, pp. 433–448 inBiology of Industrial Microorganisms (A.L. Demain, N.A. Solomon, Eds). The Benjamin/Cummings Publ. Co., USA 1985.Google Scholar
  5. Pan S.C., Bonanno S., Wagman G.H.: Efficient utilization of fatty oils as energy sources in penicillin fermentation.Appl. Microbiol. 7, 176–180 (1959).PubMedGoogle Scholar
  6. Park Y.S., Momose I., Jsunoda K., Okabe M.: Enhancement of cephalosporin C production using soyabean oil as the sole carbon source.Appl. Microbiol. Biotechnol. 40, 773–789 (1994).PubMedCrossRefGoogle Scholar
  7. Paul S., Bezbaruah R.L., Roy M.K., Ghosh A.C.: Production of cephalosporin C byCephalosporium acremonium. Effect of media constituents in shake flask fermentationProc. MICON International & 35th Ann. Conf. Assoc. Microbiologists (India), p. 33 (1994).Google Scholar
  8. Revilla G., Lopez-Nieto M.J., Luengo J.M., Martín J.F.: Carbon catabolite repression of penicillin biosynthesis byPenicillium chrysogenum.J. Antibiot. 37, 781–789 (1984).PubMedGoogle Scholar
  9. Schneider W.: Phosphorous compounds in animal tissues. I. Extraction and estimation of deoxypentose nucleic acid.J. Biol. Chem. 161, 293–295 (1945).Google Scholar
  10. Soltero B.D., Johnson S.: Continuous addition of glucose for evaluation of penicillin-producing cultures.Appl. Microbiol. 2, 41–44 (1954).PubMedGoogle Scholar
  11. Zanca D.M., Martin J.F.: Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C.J. Antibiot. 36, 700–708 (1983).Google Scholar

Copyright information

© Folia Microbiologica 1997

Authors and Affiliations

  • S. Paul
    • 1
  • R. L. Bezbaruah
    • 1
  • R. S. Prakasham
    • 1
  • M. K. Roy
    • 1
  • A. C. Ghosh
    • 1
  1. 1.Regional Research Laboratory JorhatBiochemistry DivisionAssamIndia

Personalised recommendations