Folia Microbiologica

, Volume 47, Issue 5, pp 516–520 | Cite as

Recombinagenic effect of cryptolepine inuvsH +//uvsH + anduvsH//uvsH diploid strains ofAspergillus nidulans

  • S. J. R. Chiuchetta
  • M. A. A. Castro-Prado


Recombinagenic potential of the alkaloid cryptolepine was evaluated in two diploid strains ofAspergillus nidulans—a wild type strain (uvsH +//uvsH +) and a DNA-repair-deficient one (uvsH//uvsH). Treatment of both strains with cryptolepine failed to alter colony growth in culture; its recombinagenic potential was determined by the homozygotization index (in which events of mitotic exchange may cause expression of genes previously masked by the dominant allele). Mitotic crossing-overs were induced by 7 and 14 mg/L doses of cryptolepine in both diploidA. nidulans strains.


Alkaloid Minimal Medium Antimalarial Activity Diploid Strain Mitotic Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablordeppey S.Y., Hufford C.D., Borne R.F.: H-1-NMR and C-13-NMR assignments of cryptolepine, a 3-4-benz-σ-carboline derivative isolated fromCryptolepis sanguinolenta.Planta Med. 56, 416–417 (1990).PubMedCrossRefGoogle Scholar
  2. Baptista F., Castro-Prado M.A.A.: Benlate-induced homozygosis from heterozygous diploids strain inAspergillus nidulans.Cytologia 62, 389–396 (1997).Google Scholar
  3. Beuner K.J., Pimpinelli S., Golic K.G.: Induced chromosomal exchange directs the segregation of recombinant chromatids in mitosis ofDrosophila.Genetics 150, 173–188 (1998).Google Scholar
  4. Bier D.E., Fort D.M., Mendez C.D., Luo J., Imbach P.A., Dubenko L.G., Jolad S.D., Gerber R.E., Litvak J., Lu Q., Zhang P., Reed M.J., Waldeck N., Bruening R.C., Noamesi B.K., Hector R.F., Carlson T.J., King S.R.: Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation fromCryptolepis sanguinolenta, synthesis, andin vitro andin vivo activities.J. Med. Chem. 41, 894–901 (1998).CrossRefGoogle Scholar
  5. Bonjean K., Pauw-Gillet M.C., Defresne M.P., Colson P., Houssier C., Dassoneville L., Bailly C., Greimers R., Wright C., Quetin-Leclercq J., Tits M., Angenot L.: The DNA intercalating alkaloids cryptolepine interferes with topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells.Biochemistry 37, 5136–5146 (1998).PubMedCrossRefGoogle Scholar
  6. Busso C., Chiuchetta S.J.R., Baptista F., Castro-Prado M.A.A.:uvsH//uvsH diploid strain allowing an efficient method to evaluate the recombinagenic effect of chemical and physical agents inAspergillus nidulans (Ascomycetes).Acta Scientiarium 23, 603–607 (2001).Google Scholar
  7. Cimanga K., Bruyne T., Lasure A., Van Poel B., Pieters L., Claeys M., Berghe D.V., Kambu K., Tona L., Vlietinck A.J.:In vitro biological activities of alkaloids fromCryptolepis sanguinolenta.Planta Med. 62, 22–27 (1996).PubMedCrossRefGoogle Scholar
  8. Dassonneville L., Bonjean K., Pauw-Gillet M.C., Colson P., Housier C., Quetin-Leclerco J., Angeot L., Bailly C.: Stimulation of topoisomerase II-mediated DNA cleavage by three DNA-intercalating plant alkaloids: cryptolepine, matadine and serpentine.Biochemistry 38, 7719–7726 (1999).PubMedCrossRefGoogle Scholar
  9. Franzoni M.G.M., Castro-Prado M.A.A., Gebara J.S.: On the recombinagenic activity of norfloxacin in a diploid strain ofAspergillus nidulans.Cytologia 62, 39–45 (1997).Google Scholar
  10. Gellert E., Raymond-Hamet, Schlittler E.: Die Konstitution des Alkaloids Cryptolepin.Helv. Chim. Acta 34, 642–651 (1951).CrossRefGoogle Scholar
  11. Kafer E., Mayor M.: Genetic analysis of DNA repair inAspergillus: evidence for different types of MMS sensitive hyperrec mutants.Mutat. Res. 161, 119–134 (1986).PubMedGoogle Scholar
  12. Osman F., Catton C., Tomsett B., Strike P.: Isolation and characterization ofnuv11, a mutation affecting meiotic and mitotic recombination inAspergillus nidulans.Biochimie 73, 321–327 (1991).PubMedCrossRefGoogle Scholar
  13. Osman F., Tomsett B., Strike P.: The isolation of mutagen-sensitivenuv mutants ofAspergillus nidulans and their effects on mitotic recombination.Genetics 134, 445–454 (1993).PubMedGoogle Scholar
  14. Oyekan A.O.: Role of the endothelium and cyclic in renal vasodilator responses to cryptolepine in rats.J. Cardiovasc. Pharmacol. 23, 602–611 (1994).PubMedCrossRefGoogle Scholar
  15. Paulo A., Duarte A., Gomes E.T.:In vitro antibacterial screening ofCryptolepis sanguinolenta alkaloids.J. Ethnopharmacol. 44, 127–130 (1994).PubMedCrossRefGoogle Scholar
  16. Paulo A., Gomes E.T., Steele J., Warhurst D.C., Houghton P.J.: Antiplasmodial activity ofCryptolepis sanguinolenta alkaloids from leaves and roots.Planta Med. 66, 30–34 (2000).PubMedCrossRefGoogle Scholar
  17. Pires L.T.A., Zucchi T.M.A.D.: A new method to detect potential genotoxic agents using mitotic crossing over in diploid strains ofAspergillus nidulans.Braz. J. Genet. 17, 371–376 (1994).Google Scholar
  18. Rauwald H.W., Kober M., Mutschler E., Lambrecht G.:Cryptolepis sanguinolenta: antimuscarinic properties of cryptolepine and the alkaloid fraction at M1, M2 and M3 receptors.Planta Med. 58, 486–488 (1992).PubMedCrossRefGoogle Scholar
  19. Roper J.A.: Production of heterozygous diploids in filamentous fungi.Experientia 8, 14–15 (1952).PubMedCrossRefGoogle Scholar
  20. Sterm C.: Somatic crossing-over and segregation inDrosophila melanogaster.Genetics 21, 625–730 (1936).Google Scholar
  21. Tona L., Ngimbi N.P., Tsakala M., Mesia K., Cimanga K., Apers S., Bruyne T., Pieters L., Vlietinck A.J.: Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo.J. Ethnopharmacol. 68, 193–203 (1999).PubMedCrossRefGoogle Scholar
  22. Weinberg R.A.: Tumor suppressor genes.Science 254, 1138–1146 (1991).PubMedCrossRefGoogle Scholar
  23. Wright C.W., Phillipson J.D., Awe S.O., Kirby G.C., Warhurst D.C., Quetin-Leclercq J.: Antimalarial activity of cryptolepine and some other anhydronium bases.Phyt. Res. 10, 361–363 (1996).CrossRefGoogle Scholar
  24. Yoon J.H., Byeong J.L., Hyen S.K.: TheAspergillus uvsH gene encodes a product homologous to yeast RAD18 andNeurospora UVS-2.Mol. Gen. Genet. 248, 174–181 (1995).PubMedCrossRefGoogle Scholar
  25. Zimmermann F.K., Schwaier R., Laer U.V.: Mitotic recombination induced inSaccharomyces cerevisiae with nitrous acid, diethylsulfate and carcinogenic, alkylating nitrosamides.Z. Vererbungsl. 98, 230–246 (1966).PubMedCrossRefGoogle Scholar
  26. Zimmermann F.K.: Test for recombinagens in fungi.Mutat. Res. 284, 147–158 (1992).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  • S. J. R. Chiuchetta
    • 1
  • M. A. A. Castro-Prado
    • 1
  1. 1.Department of Cell Biology and GeneticsState University of MaringáMaringáBrazil

Personalised recommendations