Folia Microbiologica

, Volume 47, Issue 6, pp 667–671 | Cite as

Toxicological response of the green algaScenedesmus bijuga to mercury and lead



Effect of mercury or lead on the growth, bioaccumulation and some enzyme activities of one of the most common algae in River Nile,Scenedesmus bijuga, was determined. The cell count and chlorophylla content decreased with an increase in mercury or lead concentrations in a culture medium, particularly at higher doses. Higher mercury and lead uptake was observed with increasing concentration of the elements. The alga accumulated appreciably more mercury than lead. At higher doses, the two elements strongly suppressed some enzyme activities of primaryS. bijuga metabolism.


Heavy Metal Mercury Heavy Metal Stress Bioaccumulation Factor High Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam M.S., Issa A.A.: Effect of manganese and calcium deficiency on the growth and oxygen exchange ofScenedesmus intermedius cultured for successive generations.Folia Microbiol.45, 353–358 (2000).Google Scholar
  2. Barbara W., Michael W.: Comparative studies of the heavy metal uptake of whole cells and different types of cell walls fromChlorella fusca.Biotech. Tech.8, 227–232 (1994).CrossRefGoogle Scholar
  3. Bergmeyer H.U.:Meth. Enzym. Anal.2, 685–690 (1974).Google Scholar
  4. Blackwood G.C., Miflin B.J.: The effects of salts on NADH malate dehydrogenase activity in maize and barley.Plant Sci. Lett.7, 435–446 (1976).CrossRefGoogle Scholar
  5. Boyle T.P.: The effect of environmental contaminants on aquatic algae, pp. 237–256 inAlgae as Ecological Indicators. Academic Press, London 1986.Google Scholar
  6. Brooks R.R., Rumsby M.G.: The biogeochemistry of trace element uptake by some New Zealand bivalves.Limnol. Oceanogr.10, 521–566 (1965).Google Scholar
  7. Burton J.O., Riley J.P.: Determination of soluble phosphorus and total phosphorus by sulfite metol method, pp. 370 in K. Paech, M.V. Tracey (Eds):Modern Methods of Plant Analysis, Vol. 2. Springer Verlag, Berlin (Germany) 1954.Google Scholar
  8. De Filippis L.F., Hampp R., Ziegler H.: The effects of sublethal concentrations of zinc, cadmium and mercury onEuglena—I. Growth and pigments.Z. Pflanzenphysiol.101, 37–47 (1981).Google Scholar
  9. Eide I., Myklestad S., Mlelson S.: Long-term uptake and release of heavy metals byAscophyllum nodosum (L.)Le Jol. (Pheophyceae)in situ.Environ. Pollut.23, 19–28 (1980).CrossRefGoogle Scholar
  10. El-Enany A.E., Issa A.A.: Proline alleviates heavy metal stress inScenedesmus armatus.Folia Microbiol.46, 227–230 (2001).CrossRefGoogle Scholar
  11. Fathi A.A., El-Shahed A.: Response of tolerant and wild strains ofScenedesmus bijuga to copper.Biol. Plant.43, 99–103 (2000).CrossRefGoogle Scholar
  12. Fathi A.A., Falkner G.: Adaptation to elevation of the concentration of the trace element copper during growth ofScenedesmus bijuga is reflected in the properties of the copper uptake system.J. Trace Microprobe Tech.15, 321–333 (1997).Google Scholar
  13. Fathi A.A., Zaki F.T., Fathy A.A.: Bioaccumulation of some heavy metals and their influence on the metabolism ofScenedesmus bijuga andAnabaena spiroides.Egypt. J. Biotechnol.,7, 293–307 (2000).Google Scholar
  14. Gadd G.M.: Accumulation of metals by microorganisms and algae, pp. 401–433 in H.J. Rehm (Ed.):Biotechnology, Vol. 66 VCH Publishers, Weinheim (Germany) 1988.Google Scholar
  15. Giusti L.: Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear River and the Tees River.Environ. Internat.26, 275–286 (2001).CrossRefGoogle Scholar
  16. Hamdy A.A.: Biosorption of heavy metals by marine algae.Curr. Microbiol.41, 232–238 (2000).PubMedCrossRefGoogle Scholar
  17. Hofner W., Naguib M.I., Kobbia I.A., Khalil Z.: Use of laboratory cultures of some algae to predict heavy metal toxicity.Egypt J. Microbiol.22, 213–226 (1986).Google Scholar
  18. Irmer U.Die Wirkung von Blei auf die grün Alga Chlamydomonas axenischer Kultur. MSc Thesis. University of Hamburg (Germany) 1985.Google Scholar
  19. Issa A.A., Adam M.S.: Influence of selenium on toxicity of some heavy metals in the green algaScenedesmus obliquus.Folia Microbiol.44, 406–410 (1999).Google Scholar
  20. Khalil Z.: EDTA and the uptake and accumulation of63Ni byPhormidium fragile.Egypt. J. Microbiol.26, 377–385 (1991).Google Scholar
  21. Khalil Z.: Toxicological response of a cyanobacterium,Phormidium fragile, to mercury.Water Air Soil Pollut.98, 179–185 (1997).Google Scholar
  22. Kuhl A.: Zur Physiologie der Speicherung kondensierter anorganisher Phosphate inChlorella.Vortr. Bot. hrsg. Deutsch. Botan. Ges.1, 157–166 (1962).Google Scholar
  23. MacAskie L.E.: The application of biotechnology of the treatment of wastes from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide containing streams.Crit. Rev. Biotechnol.11, 41–112 (1991).PubMedCrossRefGoogle Scholar
  24. Macfie S.M., Welbourn P.M.: The cell wall as a barrier to uptake of metal ions in the unicellular green algaChlamydomonas reinhardtii (Chlorophyceae).Arch. Environ. Contam. Toxicol.39, 413–419 (2000).PubMedCrossRefGoogle Scholar
  25. Magdaleno A., Ouig A., de Cabo L., Salinas C., Arreghini S., Korol S., Bevilacqua S., Lopez L., Moret S.: Water pollution in an urban Argentine river.Bull. Environ. Contam. Toxicol.67, 408–415 (2001).PubMedCrossRefGoogle Scholar
  26. Metzner H., Rau H., Senger H.: Untersuchungen zur Synchronisierbarkeit einzellner Pigment. Mangel Mutanten vonChlorella.Plant65, 186–194 (1965).CrossRefGoogle Scholar
  27. Nakajima A., Horikoshi T., Sakaguchi T.: Studies on the accumulation of heavy metal elements in biological systems—XVII. Selective accumulation of heavy metals ions byChlorella regularis.Eur. J. Appl. Microbiol. Biotechnol.12, 76–83 (1981).CrossRefGoogle Scholar
  28. Okamoto O.K., Pinto E., Latorre L.R., Bechara E.J., Colepicolo P.: Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts.Arch. Environ. Contam. Toxicol.40, 18–24 (2001).PubMedCrossRefGoogle Scholar
  29. Palich E., Joy K.W.: Glutamate dehydrogenase from pea roots: purification and properties of the enzyme.Can. J. Biochem.49, 127–138 (1971).CrossRefGoogle Scholar
  30. Rai L.C., Mallick N., Singh J.B., Kumar H.D.: Physiological and biochemical characteristics of copper tolerant and wild type strains ofAnabaena doliolum under copper stress.J. Plant Physiol.138, 68–74 (1991).Google Scholar
  31. Reed R.H., Gadd G.M.: Metal tolerance in eukaryotic and prokaryotic algae, pp. 105–118 in J. Shaw (Ed.):Heavy Metal Tolerance in Plants: Evolutionary Aspects CRC Press, Boca Raton (USA) 1990.Google Scholar
  32. Sawidis T., Brown M.T., Zachariadis G., Sratis I.: Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea.Environment27, 43–47 (2001).CrossRefGoogle Scholar
  33. Shabana E.F., Khalil Z.: Some metabolic activities inTolypothrix tenuis, as affected by cobalt and lead—II. Influence on some enzymatic activities, nitrogen and phosphorus metabolismBull. Fac. Sci. Cairo Univ. Egypt56, 517–536 (1988).Google Scholar
  34. Shehata F.H.A., Whitton B.A.: Field and laboratory studies on blue-green algae from aquatic sites with high levels of zinc.Verh. Internat. Verein. Limnol.21, 1466–1471 (1981).Google Scholar
  35. Singh C.B., Singh S.P.: Protective effects of Ca2+, Mg2+, Cu2+ and Ni2+ on mercury and methyl mercury toxicity to a cyanobacterium.Ecotoxicol. Environ. Saf.23, 1–24 (1992).PubMedCrossRefGoogle Scholar
  36. Topcuoglu S., Guven K.C., Kirbasoglu C., Gungor N., Unlu S., Yilmaz Y.Z.: Heavy metals in marine algae from Sile in the Black Sea, 1994–1997.Bull. Environ. Contam. Toxicol.2, 288–294 (2001).CrossRefGoogle Scholar
  37. Vallee B.L., Ulmer D.D.: Biochemical effects of mercury, cadmium and lead.Ann. Rev. Biochem.41, 91–128 (1972).PubMedCrossRefGoogle Scholar
  38. van Assche F., Clijsters H., Effects of metals on enzyme activity in plants.Plant Cell Environ.13, 195–206 (1990).CrossRefGoogle Scholar
  39. Wang W.X., Dei R.C.: Effects of major nutrient additions on metal uptake in phytoplankton.Environ. Pollut.111, 233–240 (2001).PubMedCrossRefGoogle Scholar
  40. Wong M.Y., Sauser K.R., Chung K.T., Wong T.Y., Liu J.K.: Response of the ascorbate peroxidase ofSelenastrum capricornutum to copper and lead in stormwaters.Environ. Monit. Assess.67, 361–378 (2001).PubMedCrossRefGoogle Scholar
  41. Wright P., Mason C.F. Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England.Sci. Total Environ.9, 139–156 (1999).CrossRefGoogle Scholar
  42. Wuertz S., Spaeth R., Hinderberger A., Griebe T., Flemming H.C., Wilderer P.A.A.: A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals.Water Sci. Technol.43 25–31 (2001).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2002

Authors and Affiliations

  1. 1.Botany Department, Faculty of ScienceEl-Minia UniversityEl-MiniaEgypt

Personalised recommendations