Advertisement

Folia Microbiologica

, Volume 43, Issue 3, pp 311–319 | Cite as

Pathogenic neisseriae—Interplay between pro-and eukaryotic worlds

  • T. F. Meyer
Article

Abstract

The pathogenicNeisseria species constitute a multi-faceted infection model of a highly adapted pathogen-host relationship. Several bacterial and host-cell factors involved in the cellular cross-talk have been recently unraveled. UsingNeisseria gonorrhoeae as a prototype, several structurally variable surface proteins, including pili and Opa proteins, have been revealed as adhesins recognizing distinct host-cell receptors. The Opa proteins, in particular, are important in facilitating interaction with heparan sulfate proteoglycan receptors and members of the CD66 and integrin receptor families. These interactions not only enable the pathogens' anchoring, and penetration into, the human mucosa but also stimulate cellular signaling cascades involving the phosphatidylcholinedependent phospholipase C, acidic sphingomyelinase and protein kinase C in epithelial cells, and Src-related kinases, Rac1, p21-activated kinase and Jun N-terminal kinase in phagocytic cells. Activation of these pathways is essential for the entry and intracellular accommodation of the pathogens but also leads to an early induction of cytokine release, thus priming the immune response. It is believed that detailed knowledge of cellular signaling cascades activated by infection will aid us in applying known and novel interfering drugs, in addition to classical antibiotic therapy, to the therapeutic and prophylactic treatment of persistent or otherwise difficult-to-treat bacterial infections.

Keywords

Ceramide Heparan Sulfate Oxidative Burst Latex Particle Human Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apicella M.A., Ketterer M., Lee F.K.N., Zhuo D., Rice P.A., Blake M.S.: The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected withNeisseria gonorrhoeae.J. Infect. Dis. 173, 636–646 (1996).PubMedGoogle Scholar
  2. Blake M.S., Gotschlich E.C.: Functional and immunological properties of pathogenicNeisseria surface proteins, pp. 377–400 in M. Inouye (Ed.):Bacterial Outer Membranes as Model Systems. John Wiley & Sons, New York 1987.Google Scholar
  3. Bos M.P., Grunert F., Belland R.J.: Differential recognition of members of the carcinoembryonic antigen family by Opa variants ofNeisseria gonorrhoeae.Infect. Immun. 65, 2353–2361 (1997).PubMedGoogle Scholar
  4. Chen T., Belland R., Wilson J., Swanson J.: Adherence of pilus-Opa+ gonococci to epithelial cellsin vitro involves heparan sulfate.J. Exp. Med. 182, 511–517 (1995).PubMedCrossRefGoogle Scholar
  5. Chen T., Gotschlich E.C.: CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins.Proc. Nat. Acad. Sci. USA 93, 14851–14856 (1996).PubMedCrossRefGoogle Scholar
  6. Connell T.D., Black W.J., Kawula T.H., Barritt D.S., Dempsey J.A., Kverneland K., Stephenson A., Schepart B.S., Murphy G.L., Cannon J.G.: Recombination among protein II genes ofNeisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family.Mol. Microbiol. 2, 227–236 (1988).PubMedCrossRefGoogle Scholar
  7. David G.: Integral membrane heparan sulfate proteoglycans.FASEB J. 7, 1023–1030 (1993).PubMedGoogle Scholar
  8. Dehio M., Gómez-Duarte O.G., Dehio C., Meyer T.F.: Vitronectin-triggered invasion of epithelial cells byNeisseria gonorrhoeae dependent on integrin α5β1 and signalling by protein kinase C.FEBS Lett., in press (1998).Google Scholar
  9. Duensing T.D., van Putten J.P.: Vitronectin mediates internalization ofNeisseria gonorrhoeae by Chinese hamster ovary cells.Infect. Immun. 65, 964–970 (1997).PubMedGoogle Scholar
  10. Finlay B.B., Falkow S.: Common themes in microbial pathogenicity revisited.Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).PubMedGoogle Scholar
  11. Fussenegger M., Kahrs A.F., Facius D., Meyer T.F.: Tetrapac (tpc), a novel genotype ofNeisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation.Mol. Microbiol. 19, 1357–1372 (1996).PubMedCrossRefGoogle Scholar
  12. Fussenegger M., Rudel T., Barten R., Ryll R., Meyer T.F.: Transformation competence and type-4 pilus biogenesis inNeisseria gonorrhoeae-a review.Gene 192, 125–134 (1997).PubMedCrossRefGoogle Scholar
  13. Gómez-Duarte O.G., Dehio M., Guzmán C.A., Chhatwal G.S., Dehio C., Meher T.F.: Binding of vitronectin to Opa-expressingNeisseria gonorrhoeae mediates invasion of HeLa cells.Infect. Immun. 65, 3857–3866 (1997).PubMedGoogle Scholar
  14. Grassmé H., Gulbins E., Brenner B., Ferlinz K., Sandhoff K., Harzer K., Lang F. Meyer T.F.: Acidic sphingomyelinase mediates entry ofNeisseria gonorrhoeae into non-phagocytic cells.Cell, in press (1997).Google Scholar
  15. Gray-Owen S.D., Dehio C., Haude A., Grunert F., Meyer T.F.: CD66 carcinoembryonic antigens mediate interactions between Opa-expressingNeisseria gonorrhoeae and human polymorphonuclear phagocytes.EMBO J. 16, 3435–3445 (1997).PubMedCrossRefGoogle Scholar
  16. Haas R., Meyer T.F.: The repertoire of silent pilus genes inNeisseria gonorrhoeae: Evidence for gene conversion.Cell 44, 107–115 (1986).PubMedCrossRefGoogle Scholar
  17. Haines K.A., Yeh L., Blake M.S., Cristello P., Korchak H., Weissmann G.: Protein 1, a translocatable ion channel fromNeisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2 generation.J. Biol. Chem. 263, 945–951 (1988).PubMedGoogle Scholar
  18. Hauck C.R., Lorenzen D., Saas J., Meyer T.F.: Anin vitro-differentiated human cell line as a model system to study the interaction ofNeisseria gonorrhoeae with phagocytic cells.Infect. Immun. 65, 1863–1869 (1997).PubMedGoogle Scholar
  19. Hauck C.R., Meyer T.F., Lang F., Gulbins E.: CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway.EMBO J. 17, 443–454 (1999).CrossRefGoogle Scholar
  20. Hauck C.R., Meyer T.F.: The lysosomal/phagosomal membrane protein h-lamp-1 is a target of the IgA1 protease ofNeisseria gonorrhoeae.FEBS Lett. 405, 86–90 (1997).PubMedCrossRefGoogle Scholar
  21. Kallstrom H., Liszewski M.K., Atinkson J.P., Jonsson A.-B.: Membrane co-factor protein (MCP or CD46) is a cellular pilus receptor for pathogenicNeisseria.Mol. Microbiol. 25, 619–38 (1997).CrossRefGoogle Scholar
  22. Kupsch E.-M., Knepper B., Kuroki T., Heuer I., Meyer T.F.: Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed byNeisseria gonorrhoeae for human leukocytes and epithelial cells.EMBO J. 12, 641–650 (1993).PubMedGoogle Scholar
  23. Makino S., van Putten J.P.M., Meyer T.F.: Phase variation of the opacity outer membrane protein controls invasion byNeisseria gonorrhoeae into human epithelial cells.EMBO J.,10, 1307–1315 (1991).PubMedGoogle Scholar
  24. McGee D.J., Rest R.F.: Regulation of gonococcal sialyltransferase, lipooligosaccharide, and serum resistance by glucose, pyruvate, and lactate.Infect. Immun. 64, 4630–4637 (1996).PubMedGoogle Scholar
  25. McGee Z.A., Johnson A.P., Taylor-Robinson D.: Pathogenic mechanisms ofNeisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4.J. Infect. Dis. 143, 413–422 (1981).PubMedGoogle Scholar
  26. Meyer T.F., Pohlner J., van Putten J.P.M.: Biology of the pathogenicNeisseria.Curr. Topics Microbiol. Immunol. 192, 283–309 (1994).Google Scholar
  27. Mosleh I., Boxberger H.-J., Sessler M.J., Meyer T.F.: Experimental infection of native human ureteral tissue withNeisseria gonorrhoeae. Adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium.Infect. Immun. 65, 3391–3398 (1997).PubMedGoogle Scholar
  28. Naumann M., Wessler S., Bartsch C., Wieland B., Meyer T.F.:Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors NF-κB and AP1 and the induction of inflammatory cytokines.J. Exp. Med. 186, 247–258 (1997).Newton A.C.: Regulation of protein kinase C.Curr. Opin. Cell Biol. 9, 161–167 (1997).PubMedCrossRefGoogle Scholar
  29. Parge H.E., Forest K.T., Hickey M.J., Christensen D.A., Getzoff E.D., Tainer J.A.: Structure of the fibre-forming protein pilin at 2.6. Å resolution.Nature 378, 32–38 (1995).PubMedCrossRefGoogle Scholar
  30. Preissner K.T.: Structure and biological role of vitronectin.Ann. Rev. Cell. Biol. 7, 275–310 (1991).PubMedGoogle Scholar
  31. van Putten J.P.M., Paul S.M.: Binding of syndecan-like cell surface proteoglycan receptors is required forNeisseria gonorrhoeae entry into human mucosal cells.EMBO J. 14, 2144–2154 (1995).PubMedGoogle Scholar
  32. van Putten J.P.M.: Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes ofNeisseria gonorrhoeae.EMBO J. 12, 4043–4051 (1993).PubMedGoogle Scholar
  33. Rudel T., Facius D., Barten R., Scheuerpflug I., Nonnenmacher E., Meyer T.F.: Role of pili and the phase-variable PilC protein in natural competence for transformation ofNeisseria gonorrhoeae.Proc. Nat. Acad. Sci. USA 92, 7986–7990 (1995).PubMedCrossRefGoogle Scholar
  34. Rudel T., Scheuerpflug I.S., Meyer T.F.:Neisseria PilC protein identified as type-4 pilus tip-located adhesin.Nature 373, 357–359 (1995).PubMedCrossRefGoogle Scholar
  35. Rudel T., Schmid A., Benz R., Kolb H.-A., Lang F., Meyer T.F.: Modulation of neisseria porin (PorB) by cytosolic ATP/GTP of target cells: Parallels between pathogen accommodation and mitochondrial endosymbiosis.Cell 85, 391–402 (1996).PubMedCrossRefGoogle Scholar
  36. Seifert H.S.: Questions about gonococcal pilus phase- and antigenic variation.Mol. Microbiol. 21, 433–440 (1996).PubMedCrossRefGoogle Scholar
  37. Schafer W.M., Rest R.F.: Interactions of gonococci with phagocytic cells.Ann. Rev. Microbiol. 43, 121–145 (1989).CrossRefGoogle Scholar
  38. Stern A., Brown M., Nickel P., Meyer T.F.: Opacity genes inNeisseria gonorrhoeae control of phase and antigenic variation.Cell 47, 61–71 (1986).PubMedCrossRefGoogle Scholar
  39. Thompson J.A., Grunert F., Zimmermann W.: Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives.J. Clin. Lab. Anal. 5, 344–366 (1991).PubMedCrossRefGoogle Scholar
  40. Virji M., Makepeace K., Ferguson D.J.P, Watt S.M.: Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae.Mol. Microbiol. 22, 941–950 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1998

Authors and Affiliations

  • T. F. Meyer
    • 1
    • 2
  1. 1.Max-Planck-Institut für BiologieTübingenGermany
  2. 2.Max-Planck-Institut für InfektionsbiologieBerlinGermany

Personalised recommendations