Advertisement

Folia Microbiologica

, Volume 43, Issue 4, pp 403–405 | Cite as

l-proline as a nitrogen source increases the susceptibility ofSaccharomyces cerevisiae S288c to fluconazole

  • C. A. Stella
  • R. Costanzo
  • H. I. Burgos
  • D. A. Saenz
  • R. D. Venerus
Papers

Abstract

Fluconazole inhibition ofSaccharomyces cerevisiae S288c growth was evaluated in media containing ammonia,l-proline orl-leucine as a nitrogen source. Growth inhibition by fluconazole was maximum whenl-proline was used as a nitrogen source, while rhodamine 6G accumulation and fluconazole resistance were the highest when ammonia was the sole nitrogen source.

Keywords

Nitrogen Source Fluconazole 288c Cell Sole Nitrogen Source Amino Acid Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson G.D., Niimi M., Cannon R.D., Jenkinson H.D.: Multiple efflux mechanisms are involved inCandida albicans fluconazole resistance.Antimicrob. Agents Chemother. 40, 2835–2841 (1996).PubMedGoogle Scholar
  2. Bossche H.V., Marichal P., Odds C.F.: Molecular mechanisms of drug resistance in fungi.Trends Microbiol. 2, 393–400 (1993).CrossRefGoogle Scholar
  3. Breeuwer P., Drocourt J.L., Rombouts F.M., Abee T.: Energy-dependent carrier-mediated extrusion of carboxyfluorescein fromSaccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry.Appl. Environ. Microbiol. 60, 1467–1472 (1994).PubMedGoogle Scholar
  4. Georgopapadakou N.H., Walsh T.J.: Antifungal agents: Chemotherapeutic targets and immunologic strategies.Antimicrob. Agents Chemother. 40, 279–291 (1996).PubMedGoogle Scholar
  5. Grenson M., Hou C., Crabeel M.: Multiplicity of the amino acid permeases inSaccharomyces cerevisiae. IV. Evidence for a general amino acid permease.J. Bacteriol. 103, 770–777 (1970).PubMedGoogle Scholar
  6. Horák J.: Amino acid transport in eucaryotic microorganism.Biochim. Biophys. Acta 864, 223–256 (1986).PubMedGoogle Scholar
  7. Horák J.: Yeast nutrient transporters.Biochim. Biophys. Acta 1331, 41–79 (1997).PubMedGoogle Scholar
  8. Kolaczkowski M., Rest M., Cybularz-Kolaczkowska A., Soumillion J.P., Konings W.N., Goffeau A.: Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p.J. Biol. Chem. 271, 31543–31548 (1996).PubMedCrossRefGoogle Scholar
  9. Kotliar N., Stella C.A., Ramos E.H., Mattoon J.R.:l-Leucine transport systems inSaccharomyces cerevisiae. Participation of GAP1, S1 and S2 transport systems.Cell. Mol. Biol. 40, 833–842 (1994).PubMedGoogle Scholar
  10. McCusker J.H., Davis R.D.: The use of proline as a nitrogen source causes hypersensitivity to, and allows more economic use of 5FOA inSaccharomyces cerevisiae.Yeast 7, 607–608 (1991).PubMedCrossRefGoogle Scholar
  11. Sheehan J.D., Espinel-Ingroff A., Moore L.S., Douglas Webb C.: Antifungal susceptibility testing of yeasts: a brief overview.Clin. Infect. Dis.,17, S494–500 (1993).Google Scholar
  12. Slavík J.: Intracellular pH of yeast cells measured with fluorescent probes.FEBS Letters 140, 22–26 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1998

Authors and Affiliations

  • C. A. Stella
    • 1
  • R. Costanzo
    • 1
  • H. I. Burgos
    • 1
  • D. A. Saenz
    • 1
  • R. D. Venerus
    • 1
  1. 1.Biochemistry Department, School of MedicineBuenos Aires UniversityArgentina

Personalised recommendations