Journal of Materials Engineering and Performance

, Volume 3, Issue 6, pp 744–753 | Cite as

In vitro electrochemical investigations of advanced stainless steels for applications as orthopaedic implants

  • M. Sivakumar
  • U. Kamachi Mudali
  • S. Rajeswari
Testing and Evaluation


Potentiodynamic anodic polarization experiments on advanced stainless steels (SS), such as nitrogenbearing type 316L and 317L SS, were carried out in Hank’s solution (8 g NaCl, 0.14 g CaCl2, 0.4 g KC1, 0.35 g NaHCO3, 1 g glucose, 0.1 g NaH2PO4, 0.1 g MgCl2, 0.06 g Na2HPO4 2H2O, 0.06 g MgSO4 7H2O/1000 mL) in order to assess the pitting and crevice corrosion resistance. The results showed a significant improvement in the pitting and crevice corrosion resistance than the commonly used type 316L stainless steel implant material. The corrosion resistance was higher in austenitic stainless steels containing higher amounts of nitrogen. The pit-protection potential for nitrogen-bearing stainless steels was more noble than the corrosion potential indicating the higher repassivation tendency of actively growing pits in these alloys. The accelerated leaching study conducted for the above alloys showed very little tendency for leaching of metal ions, such as iron, chromium, and nickel, at different impressed potentials. This may be due to the enrichment of nitrogen and molybdenum at the passive film and metal interface, which could have impeded the releasing of metal ions through passive film.


accelerated leaching crevice corrosion in vitro corrosion nitrogen bearing stainless steels orthopaedic implants pitting corrosion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Williams,J. Mater. Sci., Vol 22, 1987, p 3421CrossRefGoogle Scholar
  2. 2.
    N. Bruneel and J.A. Helsen,J. Biomed. Mater. Res., Vol 22, 1988, p 203CrossRefGoogle Scholar
  3. 3.
    L.H. Boulton and A.J. Betts,Br. Corros. J., Vol 26 (No. 4), 1991, p 287Google Scholar
  4. 4.
    Tzyy-Ping Cheng, Wen-Ta Tsai, and Ju-Tung Lee,J. Mater. Sci., Vol 25, 1990, p 936Google Scholar
  5. 5.
    K. Nielsen,Br. Corros. J., Vol 22 (No. 4), 1987, p 272Google Scholar
  6. 6.
    M. Sivakumar and S. Rajeswai,J.Marer.Sci.Lett., Vol 11, 1992, p 1039CrossRefGoogle Scholar
  7. 7.
    M. Sivakumar, U. Kamachi Mudali, and S. Rajeswari,J. Mater. Sci., (in press)Google Scholar
  8. 8.
    D.L. Levine,J. Biomed. Mater. Res., Vol 11, 1977, p 553CrossRefGoogle Scholar
  9. 9.
    S.G. Steinemann, Corrosion of Surgical Implants—In vivo and In vitro Tests,Evaluation of Biomaterials, G.D. Winter et al., Ed., John Wiley & Sons, 1980, p 1Google Scholar
  10. 10.
    O.E.M. Pohler,Failure Analysis and Prevention, Metals Handbook, Vol 11, American Society for Metals, 9th ed., 1986, p 670Google Scholar
  11. 11.
    J.J. Eckenrod and C.W. Kovach,Properties of Austenitic Stainless Steels and Their Weld Metals (Influence of Slight Chemistry Variations), ASTM STP 679, American Society for Testing and Materials, 1979, p 17Google Scholar
  12. 12.
    J.R. Kearns,J. Mater. Eng., Vol 7, 1985, p 16Google Scholar
  13. 13.
    J.E. Truman,Proceedings of International Conference on High Nitrogen Steels HNS 88, J. Foct and A. Hendry, Ed., The Institute of Metals, Lille, France, 1989, p 225Google Scholar
  14. 14.
    T. Ogawa, S. Aoki, T. Sakamoto, and T. Zaizen,Weld. J., Vol 61, 1982, p 139Google Scholar
  15. 15.
    T.A. Mozhi, K. Nishimoto, B.E. Wilde, and W.A.T. Clark,Corrosion, Vol 42, 1986, p 197Google Scholar
  16. 16.
    K. Merritt and S.A. Brown,J. Biomed. Mater. Res., Vol 22, 1988, p 111CrossRefGoogle Scholar
  17. 17.
    H.J. Mueller and E.H. Greener,J. Biomed. Mater. Res., Vol 4, 1970, p 20CrossRefGoogle Scholar
  18. 18.
    J.P. Bellier, J. Lacoeur, C. Koehler, and J.P. Davidas,Biomaterials,Vol 11, 1990, p 55Google Scholar
  19. 19.
    R.K. Dayal, N. Parvathavarthini, and J.B. Gnanamoorthy,Br. Corros. J., Vol 18 (No. 4), 1983, p 184Google Scholar
  20. 20.
    Wu Yang, Rul-chng Hua and Hul-zhong Hua,Corros. Sci., Vol 24, 1984, p 691CrossRefGoogle Scholar
  21. 21.
    J.E. Truman, M.J. Coleman, and K.R. Pirt,Br. Corros. J., Vol 12, 1977, p 236Google Scholar
  22. 22.
    R.C. Newman, Y.C. Lu, R. Bandy, and C.R. Clayton,Proceedings of the Ninth International Congress on Metallic Corrosion, National Research Council, Toronto, Vol 1, 1984, p 394Google Scholar
  23. 23.
    C.R. Clayton,Passivity Mechanisms in Stainless Steels: Mo-N Synergism, Report No. N00014-85-K-0437, State University of New York at Stony Brook, Stony Brook, New York, 1986Google Scholar
  24. 24.
    U. Kamachi Mudali, R.K. Dayal, T.P.S. Gill, and J.B. Gnanamoorthy,Werkst. Korros., Vol 37, 1986, p 637Google Scholar
  25. 25.
    U. Kamachi Mudali, R.K. Dayal, T.P.S. Gill, and J.B. Gnanamoorthy,Corrosion, Vol 32, 1990, p 454Google Scholar
  26. 26.
    U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez, Pitting Corrosion and Passive Film Stability of Nitrogen Bearing Austenitic Stainless Steels, 42nd Annual Technical Meeting of The Indian Institute of Metals, November 14–17, 1988Google Scholar
  27. 27.
    C.R. Clayton and K.G. Martin,Proceedings of the International Conference on High Nitrogen Steels HNS 88, The Institute of Metals, Lille, France, 1988, p 256Google Scholar
  28. 28.
    A.J. Sedriks,Corrosion of Stainless, John Wiley & Sons, 1979, p 63Google Scholar
  29. 29.
    R.C. Newman and T. Shahrabi,Corros. Sci., Vol 27, 8; 1987, p 827CrossRefGoogle Scholar
  30. 30.
    P.G. Laing, Biocompatibility of Biomaterials,Orthopaedic Clinics of North America, CM. Evarts, Ed., Vol 4, 1973, p 249Google Scholar

Copyright information

© ASM International 1994

Authors and Affiliations

  • M. Sivakumar
    • 1
  • U. Kamachi Mudali
    • 2
  • S. Rajeswari
    • 1
  1. 1.Department of Analytical ChemistryUniversity of MadrasMadrasIndia
  2. 2.Metallurgy DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations