Journal of Electronic Materials

, Volume 22, Issue 10, pp 1183–1187 | Cite as

Synthesis of new copper oxide superconductors at high oxygen pressure

  • B. Dabrowski
Special Issue Paper


The stability of the copper ion in +1, +2, and +3 oxidation states for oxides synthesized at oxygen activity, 10−6<f(O2)<103 bar, makes possible formation of a wide variety of distinct structures since the copper ion in a particular oxidation state prefers a unique coordination to oxygen. Thus, by controlling the oxygen pressure during the synthesis and annealing, the distribution of metaland oxygen-ions can be modified on atomic scale to optimize the structural and electronic properties. We present several examples of compounds of which the critical structural elements for superconductivity, i.e. the perfectly ordered CuO2-planes, have been obtained and doped with holes by means of high oxygen pressure. These materials, La2CuO4+δ, La2-xCaxCuO4, La2-yCu2O6+° and GaSr2Y1-xCaxCu2O7, offer a unique opportunity to study the relationship between superconductivity and structural, magnetic, and chemical properties.

Key words

High oxygen pressure synthesis La2CuO4+°, new Cu-oxide superconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Bendorz and K.A. Miller,Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
  2. 2.
    B. Dabrowski, D.G. Hinks, J.D. Jorgensen and D.R. Richards,Mat. Res. Soc. Symp. Proc. 156, 69 (1989).Google Scholar
  3. 3.
    B. Dabrowski et al. (to be published).Google Scholar
  4. 4.
    B. Dabrowski et al. (to be published).Google Scholar
  5. 5.
    B. Dabrowski, P. Radaelli, D.G. Hinks, A.W. Mitchell, J.T. Vaguhey, D.A. Groenke and K.R. Poeppelmeien,Physica C 193, 63 (1992).CrossRefGoogle Scholar
  6. 6.
    Phase Diagrams For High T c Superconductors, eds. J. D. Whitler and R.S. Roth, The American Ceramic Society (Oct. 1991).Google Scholar
  7. 7.
    J.F. Bringley, B.A. Scott, S.J. La Placa, R.F. Boehme, T.M. Shaw, M.W. McElfresh, S.S. Trail and D.E. Cox,Nature 347, 263 (1990).CrossRefGoogle Scholar
  8. 8.
    J.D. Jorgensen, B. Dabrowski, Shiyou Pei, D.G. Hinks, L. Soderholm, B. Morosin, L.E. Schiber, E.L. Venturini and D.S. Ginley,Phys. Rev. B 38, 11337 (1988).CrossRefGoogle Scholar
  9. 9.
    J.B. Torrance, Y. Tokura, A.I. Nazzal, A. Bezinge, T.C. Huang and S.S.P. Parkin,Phys. Rev. Lett. 61, 1727 (1988).CrossRefGoogle Scholar
  10. 10.
    M. Fukuoka, Y. Nakayama, Y. tomioka, K. Kishio and K. Kitazawa,Physica C 190, 91 (1991).CrossRefGoogle Scholar
  11. 11.
    N. Yamada and M. Ido,Physica C 203, 240 (1992).CrossRefGoogle Scholar
  12. 12.
    K. Kinoshita, H. Shibata and T. Yamada, Physica C 171, 523 (1990).CrossRefGoogle Scholar
  13. 13.
    J.T. Vaughey, J.P. Thiel, E.F. Hasty, D.A. Groenke, C.L. Stern, K.R. Poeppelmeier, B. Dabrowski, P. Radaelli, A.W. Mitchell and D.G. Hinks,Chem. Mater. 3, 935 (1991).CrossRefGoogle Scholar
  14. 14.
    B. Dabrowski, V. Zhang-McCoy, R. Hannon, B.A. Hunter, J.D. Jorgensen, J.L. Wagner and R.L. Hitterman,Physica C 208, 183 (1993).CrossRefGoogle Scholar
  15. 15.
    J. Karpinski, S. Rusiecki, E. Kaldis, B. Bucher and E. Jilek,Physica C 160, 449 (1989); B. Dabrowski, K. Zhang, J.J. Pluth, J.L. Wagner and D.G. Hinks,Physica C 202, 271 (1992).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 1993

Authors and Affiliations

  • B. Dabrowski
    • 1
  1. 1.Department of PhysicsNorthern Illinois UniversityDeKalb

Personalised recommendations