Folia Microbiologica

, Volume 46, Issue 6, pp 505–510 | Cite as

Influence onEnterobacter cloacae metabolism, cell-surface hydrophobicity and motility of suprainhibitory concentrations of carbapenems

  • V. Majtán
  • L'. Majtánová


The impact of postantibiotic effect (PAE) of carbapenems (imipenem, meropenem) on the metabolism (biosynthesis of macromolecules, respiration), cell-surface hydrophobicity and motility of a clinical isolate ofEnterobacter cloacae was examined. The metabolism was evaluated after 16 h and after 1 d of cultivation using 2× and 4× minimum inhibitory concentrations (MIC) of both antibiotics for the induction of PAE. Imipenem at 4×MIC did not induce PAE. After a 16-h cultivation (in the postantibiotic phase of both carbapenems), inhibition of nucleosynthesis and protein synthesis was found; after a 1-d cultivation, during regrowth stimulation of mainly14C-leucine incorporation was found. The presence of the exogeneous intermediates of citrate cycle,viz. 2-oxoglutarate, increased the respiratory activity of the cells. The cell-surface hydrophobicity (evaluated by three methods—bacterial adhesion to hydrocarbon, nitrocellulose-filter test and salt-aggregation test) decreased after PAE of both carbapenems; meropenem was more effective. Motility (an important virulence factor) was inhibited in the postantibiotic phase of both carbapenems; the 4×MIC caused a higher inhibition.


Imipenem Meropenem Carbapenems Minimum Inhibitory Concentration Pefloxacin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barmada S., Kohlepp S., Leggett J., Dworkin R., Gilbert D.: Correlation of tobramycin-induced inhibition of protein synthesis with postantibiotic effect inEscherichia coli.Antimicrob. Agents Chemother.37, 2678–2683 (1993).PubMedGoogle Scholar
  2. Blanco J., Alonso M.P., Gonzales E.A., Blanco M., Garabal J.J.: Virulence factors of bacteremicEscherichia coli with particular reference to production of cytotoxin necrotizing factor (CNF) by P-fimbriate strains.J. Med. Microbiol.31, 175–183 (1990).PubMedGoogle Scholar
  3. Braga P.C., Dal Sasso M., Maci S., Reggio S., Piatti G.: Influence of subinhibitory concentrations of brodimoprim and trimethoprim on the adhesiveness, hydrophobicity, hemagglutination and motility ofEscherichia coli.Chemotherapy41, 50–58 (1995).PubMedGoogle Scholar
  4. Buckley M.M., Brogden R.N., Barradell L.B., Goa K.L.: Imipenem-cilastatin. A reappraisal of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy.Drugs4, 408–444 (1992).CrossRefGoogle Scholar
  5. Bustamente C.J., Drusano G.L., Tatem B., Standiford H.C.: Postantibiotic effect of imipenem onPseudomonas aeruginosa.Antimicrob. Agents Chemother.5, 678–682 (1984).Google Scholar
  6. Craven R.C., Montie T.C.: Motility and chemotaxis of three strains ofPseudomonas aeruginosa used for virulence studies.Can. J. Microbiol.27, 458–460 (1981).PubMedCrossRefGoogle Scholar
  7. Gould I.M., Jason A.C., Milne K.: Use of Malthus microbial growth analyzer to study the postantibiotics effect of antibiotic.J. Antimicrob. Chemother.24, 523–531 (1989).PubMedCrossRefGoogle Scholar
  8. Gottfredsson M., Erlendsdóttir H., Kolka R., Gudmundsson A., Gudmundsson S.: Ultrastructural alterations of bacteria during the postantibiotic effect.J. Chemother.39, 153–162 (1993).Google Scholar
  9. Gottfredsson M., Erlendsdóttir H., Gudmundsson A., Gudmundsson S.: Different patterns of bacterial DNA synthesis during postantibiotic effect.Antimicrob. Agents Chemother.39, 1314–1319 (1995).PubMedGoogle Scholar
  10. Guan L., Burnham J.C.: Postantibiotic effect of CI-960, enoxacin and ciprofloxacin onEscherichia coli: effect on morphology and hemolysin activity.J. Antimicrob. Chemother.29, 529–538 (1992).PubMedCrossRefGoogle Scholar
  11. Guan L., Blumenthal R.M., Burnham J.C.: Analysis of macromolecular biosynthesis to define the quinolone-induced postantibiotic effect inEscherichia coli.Antimicrob. Agents Chemother.36, 2118–2124 (1992).PubMedGoogle Scholar
  12. Hanberger H., Svensson E., Nilsson L.E., Nilsson M.: Control-related effective regrowth time and post-antibiotic effect of meropenem on Gram-negative bacteria studied by bioluminiscence and viable evants.J. Antimicrob. Chemother.35, 585–592 (1995).PubMedCrossRefGoogle Scholar
  13. Horgen L., Jerome A., Rastogi N.: Pulsed-exposure and postantibiotic leukocyte enhancement effect of amikacin, clarithromycin, clofazimine and rifampin against intracellularMycobacterium avium.Antimicrob. Agents Chemother.42, 3006–3008 (1998).PubMedGoogle Scholar
  14. Hoštacká A.: Alterations in surface hydrophobicity ofAcinetobacter baumannii induced by meropenem.Folia Microbiol.44, 267–270 (1999).CrossRefGoogle Scholar
  15. Hoštacká A.: Thein vitro effect of imipenem and ofloxacin on enzymic activity ofKlebsiella strains.Folia Microbiol.45, 387–390 (2000).CrossRefGoogle Scholar
  16. Hybenová D., Majtán V.: The influence of postantibiotic effect and postantibiotic effect of subinhibitory concentrations of some quinolones and aminoglycosides on phospholipase C ofPseudomonas aeruginosa.Pharmazie52, 157–159 (1997).PubMedGoogle Scholar
  17. Jones R.N., Barry A.L., Thornsberry C.:In-vitro studies of meropenem.J. Antimicrob. Chemother.24 (Suppl. A), 9–29 (1989).PubMedGoogle Scholar
  18. Labia R., Morand A., Guionie M.: β-Lactamase stability of imipenem.J. Antimicrob. Chemother.18 (Suppl. E), 1–8 (1986).PubMedGoogle Scholar
  19. Lachica R.V., Zink D.L.: Plasmid-associated cell surface charge and hydrophobicity ofYersinia enterocolitica.Infect. Immun.44, 540–543 (1984).PubMedGoogle Scholar
  20. Latrache H., Bourlioux P., Karroua M., Zahir H., Hakkou A.: Effects of subinhibitory concentrations of nitroxoline on the surface properties ofEscherichia coli.Folia Microbiol.45, 485–490 (2000).Google Scholar
  21. Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O.: A new method to determine postantibiotic effect and effect of subinhibitory antibiotic concentrations.Antimicrob. Agents Chemother.37, 2200–2205 (1993).PubMedGoogle Scholar
  22. MacKenzie F.M., Gould I.M.: The postantibiotic effect.J. Antimicrob. Chemother.32, 519–537 (1993).PubMedCrossRefGoogle Scholar
  23. Majcherczyk P., Livermore P.A.: Penicillin-binding protein (PBP) 2 and the postantibiotic effect of carbapenems.J. Antimicrob. Chemother22, 75–79 (1990).Google Scholar
  24. Majtán V., Hoštacká A.: Influence of postantibiotic effect and postantibiotic sub-MICs of netilmicin, tobramycin, ciprofloxacin and pefloxacin on alginate production byPseudomonas aeruginosa.Folia Microbiol.41, 228–232 (1996).CrossRefGoogle Scholar
  25. Majtán V., Majtánová L'.: Postantibiotic effect of some antibiotics on the metabolism ofPseudomonas aeruginosa.J. Basic Microbiol.38, 221–227 (1998).PubMedCrossRefGoogle Scholar
  26. Majtánová L'., Majtán V.: Postantibiotic effect of imipenem and enoxacin againstS. typhimurium andS. enteritidis and the influence on their surface hydrophobicity.Folia Microbiol.43, 104–108 (1998a).Google Scholar
  27. Majtánová L'., Majtán V.: Postantibiotic effect and postantibiotic sub-MICs effect of ciprofloxacin, pefloxacin, netilmicin and tobramycin onEnterobacter cloacae and their influence on hydrophobicity.Microbios95, 155–164 (1998b).Google Scholar
  28. Moellering R.C., Eliopoulos G.M. Jr.,Sentochnil D.E.: The carbapenems: new broad spectrum β-lactam antibiotics.J. Antimicrob. Chemother.24 (Suppl. A), 1–7 (1989).PubMedGoogle Scholar
  29. Molinari G., Paglia P., Schito G.C.: Inhibition of motility ofPseudomonas aeruginosa andProteus mirabilis by subinhibitory concentrations of azithromycin.Eur. J. Clin. Microbiol. Infect. Dis.11, 469–471 (1992).PubMedCrossRefGoogle Scholar
  30. Nadler H.I., Pitkin D.H., Sheikh W.: The postantibiotic effect of meropenem and imipenem on selected bacteria.J. Antimicrob. Chemother.24 (Suppl. A), 225–231 (1989).PubMedGoogle Scholar
  31. Nadler H.I., Sheikh W.: A comparison of thein vitro postantibiotic effect of meropenem and imipenemversus selectedEnterobacteriaceae and other pathogens.Diagnos. Microbiol. Infec. Dis.12, 171–175 (1993).Google Scholar
  32. Odenholt-Tornqvist I.: Studies on the postantibiotic effect and postantibiotic sub-MIC effect of meropenem.J. Antimicrob. Chemother.31, 881–892 (1993).PubMedCrossRefGoogle Scholar
  33. Odenholt I., Löwdin E., Cars O.: Comparativein vitro pharmacodynamics of BO-2727, meropenem and imipenem against Grampositive and Gram-negative bacteria.Clin. Microbiol. Infectol.3, 73–81 (1997).Google Scholar
  34. Pruul H., Lewis G., McDonald P.J.: Enhanced susceptibility of Gram-negative bacteria to phagocytic killing by human polymorphonuclear leukocytes after brief exposure to aztreonam.J. Antimicrob. Chemother.22, 675–686 (1988).PubMedCrossRefGoogle Scholar
  35. Rosenberg M., Gutnick D., Rosenberg E.: Adherence of bacteria of hydrocarbons: a simple method for measuring cell-surface hydrophobicity.FEMS Microbiol. Let.9, 29–33 (1980).CrossRefGoogle Scholar
  36. Tanio T., Fukasawa M.: Thein vitro postantibiotic effect of meropenem againstPseudomonas aeruginosa.Chemotherapy (Tokyo)40 (Suppl. 1), 103–106 (1992).Google Scholar
  37. Tawfik A.F., Ramadan M.A., Shibl A.M.: Inhibition of motility and adherence ofProteus mirabilis to uroepithelial cells by subinhibitory concentrations of amikacin.Chemotherapy43, 424–429 (1997).PubMedGoogle Scholar
  38. Zhanel G.G., Crampton D.J., Kina S., Nicolle L.E., Davidson R.J., Hoban D.J.: Antimicrobial activity of subinhibitory concentrations of ciprofloxacin againstPseudomonas aeruginosa as determined by the killing curve method and the postantibiotic effect.Chemotherapy38, 388–394 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 2001

Authors and Affiliations

  • V. Majtán
    • 1
  • L'. Majtánová
    • 1
  1. 1.Institute of Preventive and Clinical MedicineBratislavaSlovakia

Personalised recommendations