Metallurgical Transactions A

, Volume 7, Issue 11, pp 1785–1791 | Cite as

The high temperature creep and fracture behavior of a 1-pct CrMoV rotor steel



The creep and fracture behavior of a low alloy ferritic steel has been studied between 220 and 340 MN/m2 at 823 and 838 K. Over most of the creep life the creep strain could be represented by: ε-εo + εT (l-e-mt ) + εst + χL e p (t-t t) where εo is the instantaneous strain on loading, εT the total transient strain,m a parameter relating to the rate of exhaustion of transient creep,t the time, εs the steady creep rate,t t the time to the onset of tertiary creep and εL andp are tertiary creep parameters. The steady-state creep rate was related to applied stress and temperature by: ε=AΣa 17 exp(RT/-397,000)

It has been shown that creep is recovery controlled. The good creep resistance of this alloy is due to the presence of vanadium carbide precipitate which inhibits recovery of the dislocation network and introduces a friction stress(Σ o) opposing deformation. Measurements of Σo have been made and when the creep processes were considered in terms of(Σ a-Σo) it was found thatε=A′ (Σ a-Σo exp (RT- 240,000 )

Under puch circumstances the stress and temperature dependence of the creep rate were similar to those predicted by the recovery theory of creep.


Metallurgical Transaction Bainite Creep Rate Creep Strain Creep Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Batte and M. C. Murray:Creep Strength in Steel and High Temperature Alloys, pp. 43–49, The Metals Society, London, 1974Google Scholar
  2. 2.
    R. Viswanathan:J. Test. Eval, 1975, vol. 3, pp. 93–106.CrossRefGoogle Scholar
  3. 3.
    G. J. P. Buchi, J. H. P. Page, and M. P. Sidey:J. Iron Steel Inst., 1965, vol. 203, pp. 291–98.Google Scholar
  4. 4.
    J. Myers, G. Willoughby, and R. K. Ham:Metal Sci. J., 1968, vol. 2, pp. 209–14.MATHCrossRefGoogle Scholar
  5. 5.
    B. B. Argent, M. N. van Niekert, and G. A. Redfern:tJ. Iron Steel Inst, 1970, vol. 208, pp. 830–43.Google Scholar
  6. 6.
    D. McLean:Rep. Progr. Phys., 1966, vol. 29, pp. 1–29.CrossRefADSGoogle Scholar
  7. 7.
    R. Lagneborg:Int. Met. Rev., 1972, vol. 17, pp. 130–46.Google Scholar
  8. 8.
    O. D. Sherby and P. M. Burke,Progr. Mater. Sci., 1967, vol. 13, pp. 325–90.Google Scholar
  9. 9.
    D. Sidey and B. Wilshire:Metal Sd. J., 1969, vol. 3, pp. 56–60.Google Scholar
  10. 10.
    P. W. Davies, G. Nelmes, K. R. Williams, and B. Wilshire:Metal Sci. J., 1973, vol. 7, pp. 87–92.CrossRefGoogle Scholar
  11. 11.
    K.R. Williams and B. Wilshire:Metal Sci. J., 1973, vol. 7, pp. 176–79.CrossRefGoogle Scholar
  12. 12.
    W. J. Evans and G. F. Harrison: National Gas Turbine Establishment Report No. R340, 1976.Google Scholar
  13. 13.
    J. D. Parker and B. Wilshire:Metal Sci. J., 1975, vol. 9, pp. 248–52.CrossRefGoogle Scholar
  14. 14.
    K. R. Williams and I. R. McLaughlin:J. Mater. Sci., 1970, vol. 5, pp. 1063–72.CrossRefADSGoogle Scholar
  15. 15.
    F. Garofalo, O. Richmond, W. F. Domis, and F. von Gemmingen:Jt. Int. Conf. on Creep, pp. 1–31, The Institution of Mech. Eng., London, 1963Google Scholar
  16. 16.
    P. W. Davies, W. J. Evans, K. R. Williams, and B. Wilshire:Scr. Met., 1969, vol. 3, pp. 671–74.CrossRefGoogle Scholar
  17. 17.
    W. J. Evans and B. Wilshire:Met. Trans., 1970, vol. 1, pp. 2133–39.CrossRefGoogle Scholar
  18. 18.
    F. C. Monkman and N. J. Grant:Proc. ASTM, 1956, vol. 56, pp. 593–605.Google Scholar
  19. 19.
    P. W. Davies and B. Wilshire:Structural Processes in Creep, pp. 34–43, Iron and Steel Institute, London, 1961Google Scholar
  20. 20.
    C. K. L. Davies, P. W. Davies, and B. Wilshire:Phil. Mag., 1965, vol. 12, pp. 827–39.CrossRefADSGoogle Scholar
  21. 21.
    S. K. Mitra and D. McLean:Proc. Roy. Soc, Ser. A, 1966, vol. 295, pp. 288–99.CrossRefADSGoogle Scholar
  22. 22.
    P. L. Threadgill and B. Wilshire:Creep Strength in Steel and High Temperature Alloys, pp. 8–14, The Metals Society, London, 1974Google Scholar
  23. 23.
    F. S. Buffington, K. Hirano, and M. Cohen:Acta Met., 1961, vol. 9, pp. 434–39.CrossRefGoogle Scholar
  24. 24.
    J. D. Baird, A. Jamieson, R. R. Preston, and R. C. Cochrane:Creep Strength in Steel and High Temperature Alloys, pp. 207–16, The Metals Society, London, 1974Google Scholar
  25. 25.
    B. Russell, R. K. Ham, J. M. Silcock, and G. Willoughby:Metal Sci. J., 1968, vol. 2, pp. 201–09.CrossRefGoogle Scholar
  26. 26.
    P. L. Threadgill and B. Wilshire:Metal Sci. J., 1974, vol. 8, pp. 117–24.Google Scholar
  27. 27.
    B. Bergman:Scand. J. Met, 1975, vol. 4, pp. 97–108. 28. R. Lagneborg: Scr. Met, 1973, vol. 7, pp. 605-14.Google Scholar
  28. 29.
    R. Lagneborg and B. Bergman:Metal Sci. J., 1976, vol. 10, pp. 20–28,CrossRefGoogle Scholar
  29. 30.
    C. N. Ahlquist and W. D. Nix:Scr. Met, 1969, vol. 3, pp. 679–81.CrossRefGoogle Scholar
  30. 31.
    A. H. CottreU and V. Aytekin: J. Inst. Metals, 1950, vol. 77, pp. 389–422.Google Scholar
  31. 32.
    P. W. Davies and B. Wilshire:Scr. Met, 1971, vol. 5, pp. 475–78.CrossRefGoogle Scholar
  32. 33.
    J. K. Tien, B. H. Kear, and G. R. Leverant:Scr. Met, 1972, vol. 6, pp. 135–40.CrossRefGoogle Scholar
  33. 34.
    C. L. Meyers and O. D. Sherby:J. Inst. Metals, 1961-62, vol. 90, pp. 380–82.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1976

Authors and Affiliations

  • D. Side
    • 1
  1. 1.Christ’s CollegeCambridgeEngland

Personalised recommendations