Journal of Electronic Materials

, Volume 22, Issue 9, pp 1141–1146 | Cite as

Surface charge spectroscopy—A novel surface science technique for measuring surface state distributions on semiconductors

  • R. W. M. Kwok
  • W. M. Lau
  • D. Landheer
  • S. Ingrey


A novel technique, surface charge spectroscopy (SCS), has been developed for measuring interface state density at a dielectric-semiconductor interface in conjunction with x-ray photoelectron spectroscopy (XPS). In this technique, a thin dielectric layer with thickness up to 15 nm, is deposited on a semiconductor substrate. The surface Fermi level (EFs) of the semiconductor and the surface potential of the dielectric are measured using XPS, the latter of which can be varied by charging the dielectric with electrons from a low energy electron flood gun commonly equipped inside an XPS system. The interface state distribution in the band gap of the sample is then extracted from the relationship between the EFs and the dielectric surface potential with a simple space-charage calculation similar to the conventional capacitance-voltage technique. Experimental data on SiO2/Si and SiNx/InP samples are shown in the article to illustrate the applicability of SCS.

Key words

Interface state density SiO2/Si SiNx/Inp surface charge spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff and G. Hollinger,Phys. Rev. B 38, 6084 (1988).CrossRefGoogle Scholar
  2. 2.
    W.M. Lau,Appl. Phys. Lett. 54, 338 (1989).CrossRefGoogle Scholar
  3. 3.
    W.M. Lau,J. Appl. Phys., 67, 1504 (1990).CrossRefGoogle Scholar
  4. 4.
    W.M. Lau and X.-W. Wu,Surf. Sci. 254, 345 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Tanuma, C.J. Powell and D.R. Penn,Surf Interface Ana., 11, 577 (1988).CrossRefGoogle Scholar
  6. 6.
    C.J. Powell,J. Electron. Spectrosc. Relat. Phenom. 47, 197 (1988).CrossRefGoogle Scholar
  7. 7.
    M.H. Hecht,Phys. Rev. B 41, 7918 (1990).CrossRefGoogle Scholar
  8. 8.
    E.H. Nicollian and J.R. Brews,MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley and Sons, (1982).Google Scholar
  9. 9.
    W.M. Lau, S. Jin, X.-W. Wu and S. Ingrey,J. Vac. Sci. Technol.. A9, 994 (1991).Google Scholar
  10. 10.
    R.W.M. Kwok and W.M. Lau,J. Vac. Sci. Technol. A10, 2515 (1992).Google Scholar
  11. 11.
    W.M. Lau, R.W.M. Kwok and S. Ingrey,Surf Sci. 271, 579 (1992).CrossRefGoogle Scholar
  12. 12.
    R.N.S. Sodhi, W.M. Lau and S. Ingrey,J. Vac. Sci. Technol. A7, 663 (1989).Google Scholar
  13. 13.
    D. Landheer, N.G. Skinner, T.E. Jackman, D.A. Thompson, J. G. Simmons, D.V. Stevanovic and D. Khatamain,J. Vac. Sci. Technol. A9, 2594 (1991).Google Scholar
  14. 14.
    J.A. Theil, S.V. Hattangady and G. Lucovsky,J. Vac. Sci. Technol. A10, 719 (1992).Google Scholar
  15. 15.
    D. Landheer, J.A. Bardwell, G.I. Sproule, J. Scott-Thomas, R.W.M. Kwok and W.M. Lau,Canadian J. of Phys. 70, 795 (1992).Google Scholar
  16. 16.
    R.W.M. Kwok, W.M. Lau, S. Ingrey and D. Landheer,J. Vac. Sci. Technol. A (July/August 1993), in press.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1993

Authors and Affiliations

  • R. W. M. Kwok
    • 1
  • W. M. Lau
    • 1
  • D. Landheer
    • 2
  • S. Ingrey
    • 3
  1. 1.Surface Science Western and Department of Materials EngineeringThe University of Western OntarioLondonCanada
  2. 2.Institute for Microstructural SciencesNational Research Council of CanadaOttawaCanada
  3. 3.Belf-Northern ResearchOttawaCanada

Personalised recommendations