Folia Microbiologica

, Volume 47, Issue 2, pp 171–177 | Cite as

Effect of plant oils and organic acids on rumen fermentationin Vitro

  • D. Jalč
  • S. Kišidayová
  • F. Nerud


We determined the effect of plant oils (rapeseed, sunflower, linseed) and organic acids (aspartic and malic) on the fermentation of diet consisting of hay, barley and sugar beet molasses. Rumen fluid was collected from two sheep (Slovak Merino) fed with the same diet twice daily. Mixed rumen microorganisms were incubated in fermentation fluid, which contained rumen fluid and Mc Dougall's buffer. All supplemented diets significantly increased pH, molar proportion of propionate, and numerically decreased methane production. Lactate production was also decreased significantly (except with malate). Incorporation of plant oils into aspartate- and malate-treated incubations negated the decrease of butyrate, lactate and the increase of pH and ammonia with malate treatment, as well asin vitro dry matter digestibility and pH with aspartate treatment. The effect of combined additives on methane production and molar proportion of propionate was lower compared with additives supplemented separately. Combination of additives had no additive effect on rumen fermentation. All additives decreased total protozoan counts in rumen fluid.


Methane Production Volatile Fatty Acid Monensin Rumen Fluid Molar Proportion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blümmel M., Aiple K.P., Steingass H.: A note on the stoichiometrical relationship of short chain fatty acid production and gas formationin vitro in foodstuffs of widely differing quality.J. Anim. Physiol. Anim. Nutr.81, 157–167 (1999).CrossRefGoogle Scholar
  2. Bricknell K.S., Brook J., Finegold S.M.: Optimizing methylation conditions for gas liquid chromatography assay of lactic and succinic acid in biological samples.Chromatografia12, 22–24 (1979).CrossRefGoogle Scholar
  3. Callaway T.R., Martin S.A.: Effects of organic acid and monensin treatment onin vitro mixed ruminal microorganisms fermentation of cracked corn.J. Anim. Sci.74, 1982–1989 (1996).PubMedGoogle Scholar
  4. Callaway T.R., Martin S.A.: Effects of cellobiose and monensin onin vitro fermentation of organic acids by mixed ruminal bacteria.J. Dairy Sci.80, 1126–1135 (1997).PubMedCrossRefGoogle Scholar
  5. Carro M.D., Lopez S., Valdes C., Ovejero F.J.: Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (Rusitec).Anim. Feed. Sci. Technol.79, 279–288 (1999).CrossRefGoogle Scholar
  6. Coleman G.S.: Rumen entodiniomorphid protozoa, pp. 39–54 in A.E.R. Taylor, J.R. Baker (Eds):Methods of Cultivating Parasites in Vitro. Academic Press, London 1978.Google Scholar
  7. Conway E.J.:Microdiffusion Analysis and Volumetric Error. Crosby Lockwood, London 1962.Google Scholar
  8. Cottyn B.G., Boucque C.V.: Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid.J. Agric. Food Chem.16, 105–107 (1968).CrossRefGoogle Scholar
  9. Czerkawski J.W., Blaxter K.L., Weinman F.W.: The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production.Brit. J. Nutr.20, 349–362 (1966).PubMedCrossRefGoogle Scholar
  10. Demeyer D.I., Henderickx M.K.: Competitive inhibition ofin vitro methane production by mixed rumen bacteria.Arch. Internat. Physiol. Biochem.75, 157–159 (1967).Google Scholar
  11. Demeyer D.I., Henderickx M.K., Van Nevel C.J.: Influence of pH on fatty acids inhibition of methane production by mixed rumen bacteria.Arch. Int. Physiol. Biochem.75, 555–556 (1967).Google Scholar
  12. Devendra C., Lewis D.: Fat in the ruminant diet: a review.Ind. J. Anim. Sci.44, 917–938 (1974).Google Scholar
  13. Dogiel V.A.: Monografie der FamilieOphryoscolecidae.Arch. Protistkd.59, 1–280 (1927).Google Scholar
  14. Dohme F., Machmüller A., Wasserfallen A., Kreuzer M.: Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with Rusitec.Can. J. Anim.80, 473–482 (2000).Google Scholar
  15. Dong Y., Bae H.D., Mc Allister T.A., Mathison G.W., Cheng K.J.: Lipid-induced depression on methane production and digestibility in the artificial, rumen system (Rusitec).Can. J. Anim. Sci.77, 269–278 (1997).Google Scholar
  16. Doreau M., Ferlay A., Elmeddah Y.: Organic matter and nitrogen digestion by dairy cows fed calcium salts of rapeseed oil fatty acids or rapeseed oil.J. Anim. Sci.71, 499–504 (1993).PubMedGoogle Scholar
  17. Doreau M., Ferlay A.: Effect of dietary lipids on nitrogen metabolism in the rumen: a review.Livestock Prod. Sci.43, 97–110 (1995).CrossRefGoogle Scholar
  18. Fellner V., Sauer F.D., Kramer J.K.D.: Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture.J. Dairy Sci.78, 1815–1823 (1995).PubMedGoogle Scholar
  19. Garnsworthy P.C.: Pats in dairy cow diets, pp. 87–104 in P.C. Garnsworthy, J. Wiseman (Eds):Recent Advances in Animal Nutrition. Nottingham University Press, Nottingham (UK) 1997.Google Scholar
  20. Jenkins T.C.: Nutrient digestion, ruminal fermentation and plasma lipids in steers fed combinations of hydrogenated fat and lecithin.J. Dairy Sci.73, 2934–2939 (1990).PubMedGoogle Scholar
  21. Jouany J.P.: Manipulation of microbial activity in the rumen.Arch. Anim. Nutr.46, 133–153 (1994).CrossRefGoogle Scholar
  22. Lopez S., Valdes C., Newbold C.J., Wallace R.J.: Influence of sodium fumarate addition on rumen fermentationin vitro.Brit. J. Nutr.81, 59–64 (1999).PubMedGoogle Scholar
  23. Machmüller A., Ossowski D.A., Wanner A., Kreuzer M.: Potential of various fatty feeds to reduce methane release from rumen fermentationin vitro (Rusitec).Anim. Feed. Sci. Technol.71, 117–130 (1998).CrossRefGoogle Scholar
  24. Machmüller A., Ossowski D.A., Kreuzer M.: Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs.Anim. Feed Sci. Technol.85, 41–60 (2000).CrossRefGoogle Scholar
  25. Maczulak A.E., Dehority B.A., Palmquist D.L.: Effects of long-chain fatty acids on growth of rumen bacteria.Appl. Environ. Microbiol.42, 856–862 (1981).PubMedGoogle Scholar
  26. Martin S.A., Streeter M.N.: Effect of malate onin vitro mixed ruminal microorganism fermentation.J. Anim. Sci.73, 2141–2145 (1995).PubMedGoogle Scholar
  27. Martin S.A., Park C.M.: Effect of extracellular hydrogen on organic acid utilization by the ruminal bacteriumSelenomonas ruminantium.Curr. Microbiol.32, 327–331 (1996).PubMedCrossRefGoogle Scholar
  28. Martin S.A.: Manipulation of ruminal fermentation with organic acids: a review.J. Anim. Sci.76, 3123–3132 (1998).PubMedGoogle Scholar
  29. Martin S.A., Streeter M.N., Nisbet D.J., Hill G.M., Williams S.E.: Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet.J. Anim. Sci.77, 1008–1015 (1999).PubMedGoogle Scholar
  30. Mc Allister T.A., Okine E.K., Mathison G.W., Cheng K.J.: Dietary, environmental and microbiological aspects of methane production in ruminants.Can. J. Anim. Sci.76, 231–243 (1996).CrossRefGoogle Scholar
  31. Mc Dougall E.I.: Studies on ruminant saliva. I. The composition and output of sheep' saliva.Biochem. J.43, 99–109 (1948).Google Scholar
  32. Nagaraja T.G., Newbold C.J., Van Nevel C.J., Demeyer D.I.: Manipulation of rumen fermentation. pp. 523–632 in P.N. Hobson, C.J. Stewart (Eds):The Rumen Microbial Ecosystem. Blackie Academic and Professional, London 1997.Google Scholar
  33. Newbold C.J., Wallace R.J., Mc Intosh F.M.: Mode of action of the yeastSaccharomyces cerevisiae as a feed additive for ruminants.Brit. J. Nutr.76, 249–261 (1996).PubMedCrossRefGoogle Scholar
  34. Nisbet D.J., Martin S.A.: Effect of dicarboxylic acids andAspergilus oryzae fermentation extract on lactate uptake by the ruminal bacteriumSelenomonas ruminantium.Appl. Environ. Microbiol.56, 3515–3518 (1990).PubMedGoogle Scholar
  35. Nisbet D.J., Martin S.A.: Effects of fumarate,l-malate and anAspergilus oryzae fermentation extract ond-lactate utilisation by the ruminal bacteriumSelenomonas ruminantium.Curr. Microbiol.26, 133–136 (1993).CrossRefGoogle Scholar
  36. Ogimoto K., Imai S.:Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo 1981.Google Scholar
  37. Prins R.A., van Nevel C.J., Demeyer D.I.: Pure culture studies of inhibitors for methanogenic bacteria.Antonie van Leeuwenhoek.J. Microbiol.38, 281–287 (1972).Google Scholar
  38. SAS: SAS/STAT,User's Guide, version 6 SAS Institute Inc. Carry (NC, USA) 1989.Google Scholar
  39. van Nevel C.J., Demeyer D.I.: Control of rumen methanogenesis.Environ., Monit. Assessm.42, 73–97 (1996).CrossRefGoogle Scholar
  40. Wettstein H.R., Machmüller A., Kreuzer M.: Effect of raw and modified canola lecithin compared to canola oil, canola seed and soy lecithin on ruminal fermentation measured with rumen simulation technique.Anim. Feed. Sci. Technol.85, 153–169 (2000).CrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 2002

Authors and Affiliations

  • D. Jalč
    • 1
  • S. Kišidayová
    • 1
  • F. Nerud
    • 2
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations