Folia Microbiologica

, Volume 47, Issue 2, pp 157–160 | Cite as

Induction of morphological alterations by antineoplastic agents in yeast

  • E. Stavrinidis
  • A. Delitheos
  • E. Tiligada


Saccharomyces cerevisiae was used as an alternative experimental model in order to investigate the effects of antineoplastic agents on eukaryotic cells. After being exposed to the most common clinically used antineoplastic agents, yeast cells were examined under the light microscope. Folate and pyrimidine antagonists, platinum derivatives, mitomycin C, actinomycin D and bleomycin induced alterations in yeast cellular morphology, which were not observed following treatment with drugs belonging to any category other than the antineoplastics, leading to the suggestion that these alterations could potentially be used as an experimental tool in pre-screening for new chemotherapeutic leads.


Tamoxifen Yeast Cell Bleomycin Antineoplastic Agent Antineoplastic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldea M., Casas C., Gallego C., Espinet C., Herrero E.: The yeast cell cycle: positive and negative controls.Microbiologia 10, 27–36 (1994).PubMedGoogle Scholar
  2. Cardenas M.E., Cruz M.C., Del Poeta M., Chung N., Perfect J.R., Heitman J.: Antifungal activities of antineoplastic agents:Saccharomyces cerevisiae as a model system to study drug action.Clin. Microbiol. Rev. 12, 583–611 (1999).PubMedGoogle Scholar
  3. Chen K.C., Csikasz-Nagy A., Gyorffy B., Val J., Novak B., Tyson J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle.Mol. Biol. Cell 11, 369–391 (2000).PubMedGoogle Scholar
  4. Chun K.T., Goebl M.G.: The identification of transposon-tagged mutations in essential genes that affect cell morphology inSaccharomyces cerevisiae.Genetics 142, 39–50 (1996).PubMedGoogle Scholar
  5. Delitheos A., Karavokyros I., Tiligada E.: Response ofSaccharomyces cerevisiae strains to antineoplastic agents.J. Appl. Bacteriol. 79, 379–383 (1995a).PubMedGoogle Scholar
  6. Delitheos A., Tiligada E., Stavrinidis E., Manolis C., Vovou I.: Effect of antineoplastic drugs onSaccharomyces cerevisiae under stress conditions.Anticanc. Res. 15, 2921 (1995b).Google Scholar
  7. Gimeno C.J., Ljungdahl P.O., Styles C.A., Fink G.R.: Unipolar cell divisions in the yeastS. cerevisiae lead to filamentous growth: regulation by starvation and RAS.Cell 68, 1077–1090 (1992).PubMedCrossRefGoogle Scholar
  8. Hartwell L.H.: Role of yeast in cancer research.Cancer 69, 2615–2621 (1992).PubMedCrossRefGoogle Scholar
  9. Hartwell L.H.: Macromolecule synthesis in temperature-sensitive mutants of yeast.J. Bacteriol. 93, 1662–1670 (1967).PubMedGoogle Scholar
  10. Herskowitz I.: Life cycle of the budding yeastSaccharomyces cerevisiae.Microbiol. Rev. 52, 536–553 (1988).PubMedGoogle Scholar
  11. Lee S.S., Robinson S.M., Wang H.Y.: Rapid determination of yeast viability.Biotech. Bioengin. Symp. 11, 641–649 (1981).Google Scholar
  12. Lew D.J., Reed S.I.: Cell cycle control of morphogenesis in budding yeast.Curr. Opin. Genet. Dev. 5, 17–23 (1995).PubMedCrossRefGoogle Scholar
  13. Lim S.T., Jue C.K., Moore C.W., Lipke P.N.: Oxidative cell wall damage mediated by bleomycin-Fe(II) inSaccharomyces cerevisiae.J. Bacteriol. 177, 3534–3539 (1995).PubMedGoogle Scholar
  14. Mendoza I., Quintero F.J., Bressan R.A., Hasegawa P.M., Pardo J.M.: Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells.J. Biol. Chem. 271, 23061–23067 (1996).PubMedCrossRefGoogle Scholar
  15. Miligkos V., Tiligada E., Papamichael K., Ypsilantis E., Delitheos A.: Anticancer drugs as inducers of thermotolerance in yeast.Folia Microbiol. 45, 339–342 (2000).CrossRefGoogle Scholar
  16. Moore C.W., Del Valle R., McKoy J., Pramanik A., Gordon R.E.: Lesions and preferential initial localization of (S-methyl-3H)bleomycin A2 onSaccharomyces cerevisiae cell walls and membranes.Antimicrob. Agents Chemother. 36, 2497–2505 (1992).PubMedGoogle Scholar
  17. Moore C.W.: Internucleosomal cleavage and chromosomal degradation by bleomycin and phleomycin in yeast.Cancer Res. 48, 6837–6843 (1988).PubMedGoogle Scholar
  18. Mösch H.U., Roberts R.L., Fink G.R.: Ras2 signalsvia the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth inSaccharomyces cerevisiae.Proc. Nat. Acad. Sci. USA 93, 5352–5356 (1996).PubMedCrossRefGoogle Scholar
  19. Nitiss J., Wang J.C.: DNA topoisomerase-targeting antitumor drugs can be studied in yeast.Proc. Nat. Acad. Sci. USA 85, 7501–7505 (1988).PubMedCrossRefGoogle Scholar
  20. Omura S.:The Search for Bioactive Compounds from Microorganisms, pp. 37–38. Springer-Verlag, New York 1992.Google Scholar
  21. Pratt W.B., Ruddon R.W., Ensminger W.D., Maybaum J.:The Anticancer Drugs, pp. 183–198. Oxford University Press, New York 1994.Google Scholar
  22. Quinlan R.A., Pogson C.I., Gull K.: The influence of the microtubule inhibitor methyl benzimidazol-2-yl-carbamate (MBC) on nuclear division and the cell cycle inSaccharomyces cerevisiae.J. Cell. Sci. 46, 341–352 (1980).PubMedGoogle Scholar
  23. Simon J.A., Szankasi P., Nguyen D.K., Ludlow C., Dunstan H.M., Roberts C.J., Jensen E.L., Hartwell L.H., Friend S.H.: Differential toxicities of anticancer agents among DNA repair and checkpoint mutants ofSaccharomyces cerevisiae.Cancer Res. 60, 328–333 (2000).PubMedGoogle Scholar
  24. Stratford M.: Another brick in the wall? Recent developments concerning the yeast cell envelope.Yeast 10, 1741–1752 (1994).PubMedCrossRefGoogle Scholar
  25. Tiligada E., Delitheos A.: Involvement of potassium, ions in the action of various antineoplastic drugs on the growth ofSaccharomyces cerevisiae.Lett. Appl. Microbiol. 16, 251–253 (1993).PubMedGoogle Scholar
  26. Tiligada E., Giannakakou P., Karavokyros I., Delitheos A.: Effect of calcium channel blockers on the action of various antitumor agents in the yeastSaccharomyces cerevisiae.J. Appl. Bacteriol. 81, 481–485 (1996).Google Scholar
  27. Tiligada E., Stavrinidis E., Delitheos A.: Effect of tamoxifen in lower eukaryotic cells.Anticanc. Res. 17, 4098 (1997).Google Scholar
  28. Tiligada E., Stavrinidis E., Manolis C., Delitheos A.: Effect of chromatin function inhibitors on yeast whole cells and spheroplasts.Alternat. Lab. Anim. 27, 951–956 (1999).Google Scholar
  29. Weisman L.S., Bacallao R., Wickner W.: Multiple methods for visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle.J. Cell Biol. 105, 1539–1547 (1987).PubMedCrossRefGoogle Scholar
  30. Yang S.S., Yeh E., Salmon E.D., Bloom K.: Identification of a mid-anaphase checkpoint in budding yeast.J. Cell Biol. 136, 345–354 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 2002

Authors and Affiliations

  1. 1.Department of Experimental Pharmacology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations