Journal of Electronic Materials

, Volume 22, Issue 8, pp 1055–1060 | Cite as

Nanometer fabrication in mercury cadmium telluride by electron cyclotron resonance microwave plasma reactive ion etching

  • C. R. Eddy
  • C. A. Hoffman
  • J. R. Meyer
  • E. A. Dobisz
Special Issue Paper


It has been recently reported (J.R. Meyer, F.J. Bartoli, C.A. Hoffman, and L.R. Ram-Mohan,Phys. Rev. Lett. 64, 1963 [1990]) that novel electronic and optical effects are anticipated in nanometer scale features of narrow band gap semiconductors such as mercury cadmium telluride (MCT). These efforts could lead to the creation of non-linear optical switches, high efficiency infrared lasers, and unique nanoelectronic devices. This work reports on the first realization of MCT nanostructures through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave plasma source. It is shown that the low energy ions produced by an ECR system can etch MCT with good selectivity over an e-beam resist mask and with high resolution. Using these fabrication methods, 40–70 nm features with aspect ratios of 3–5∶1 and sidewall angles greater than 88° have been demonstrated. Qualitative investigations of some of the etch mechanisms of this technique are made, and results suggest a desorption limited process.

Key words

E-beam lithography HgCdTe plasma reactive ion etching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Roukes, A. Scherer, S.J. Allen, Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe and J.P. Harbison,Phys. Rev. Lett. 59, 3011 (1987).CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, P.C. Main, P.H. Beton, P. Streda, L. Eaves, C.D.W. Wilkinson and S.P. Beaumont,Phys. Rev. Lett. 67, 3014, 1991).CrossRefGoogle Scholar
  3. 3.
    L.P. Kouwenhoven, F.W.J. Hekking, B.J. van Wees, C.J.P.M. Harmans, C.E. Timmering and C.T. Foxon,Phys. Rev. Lett. 65, 361 (1990).CrossRefGoogle Scholar
  4. 4.
    H. van Houten, B.J. van Wees, J.E. Mooij, C.W.J. Beenakker, J.G. Williamson and C.T. Foxon,Europhys. Lett. 5, 721 (1988).CrossRefGoogle Scholar
  5. 5.
    J. Spector, H.J. Stormer, K.W. Baldwin, L.N. Pfeiffer and K.W. West,Appl. Phys. Lett. 56, 2433 (1990).CrossRefGoogle Scholar
  6. 6.
    P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen and S.J. Wind,Phys. Rev. Lett. 66, 1926 (1991).CrossRefGoogle Scholar
  7. 7.
    J.R. Meyer, F.J. Bartoli, C.A. Hoffman and L.R. Ram-Mohan,Phys. Rev. Lett. 64, 1963 (1990).CrossRefGoogle Scholar
  8. 8.
    J.R. Meyer, F.J. Bartoli, C.A. Hoffman and L.R. Ram-Mohan,Superlatt. and Mocrostruct. 7, 387 (1990).CrossRefGoogle Scholar
  9. 9.
    J.R. Meyer, C.A. Hoffman and F.J. Bartoli,II–VI Semiconductor Compounds, ed. M. Jain, (World Scientific, London, in press).Google Scholar
  10. 10.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel and C.T. Foxon,Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
  11. 11.
    Y. Jaing, M.C. Teich, W.I. Wang and J.R. Meyer,J. Appl. Phys. 71, 3394 (1992).CrossRefGoogle Scholar
  12. 12.
    A. Semu, L. Montelius, P. Leech, D. Jamieson and P. Silverberg,Appl. Phys. Lett. 59, 1752 (1991).CrossRefGoogle Scholar
  13. 13.
    J.K. Elkind and G.J. Orloff,J. Vac. Sci. Technol. A10, 1106 (1992).CrossRefGoogle Scholar
  14. 14.
    J. Asmussen,Handbook of Plasma Processing Technology, eds., S.M. Rossnagel, J.J. Cuomo and W.D. Westwood (Noyes Publications, Park Ridge, NJ, 1990), p. 285.Google Scholar
  15. 15.
    G.F. Doughty, R. Cheung, M.A. Foad, M. Rahman, N.I. Cameron, N.P. Johnson, P.D. Wang and C.D.W. Wilkinson,Photons and Low Energy Particles in Surface Processing, eds. C.J.H. Ashby, J.H. Brannon and S.W. Pang,MRS Symp. Proc. 236, 223 (1992).Google Scholar
  16. 16.
    G. Bahir and E. Finkman,J. Vac. Sci. Technol. A7, 348 (1989).Google Scholar
  17. 17.
    O.J. Glembocki and E.A. Dobisz,J. Vac. Sci. Technol. A9, 1410 (1991).CrossRefGoogle Scholar
  18. 18.
    G.S. Oehrlein,Handbook of Plasma Processing Technology, eds. S.M. Rossnagel, J.J. Cuomo and W.D. Westwood (Noyes Publications, Park Ridge, NJ, 1990), p. 196.Google Scholar
  19. 19.
    R. Cheung, S. Thoms, S.P. Beamout, G. Doughty, V. Law and C.D.W. Wilkinson,Electron. Lett. 23, 857 (1987).CrossRefGoogle Scholar
  20. 20.
    L. Henry, C. Vandry and P. Granjoux,Electron. Lett. 23, 1253 (1987).CrossRefGoogle Scholar
  21. 21.
    T.R. Hayes, M.A. Dreisback, P.M. Thomas, W.C. Dautremont-Smith and L.A. Heimbrook,J. Vac. Sci. and Technol. B47, 1130 (1989).Google Scholar
  22. 22.
    A. Semu and P. Silverberg,Semicond. Sci. Technol. 6, 287 (1991).CrossRefGoogle Scholar
  23. 23.
    C.J. Mogab and H.J. Levinstein,J. Vac. Sci. Technol. 17, 721 (1980).CrossRefGoogle Scholar
  24. 24.
    C.R. Eddy, Jr., E.A. Dobisz, C.A. Hoffman and J.R. Meyer,Appl. Phys. Lett. 62, 2362 (1993).CrossRefGoogle Scholar
  25. 25.
    G. Franz,J. Electrochem. Soc. 137, 2896 (1990).CrossRefGoogle Scholar
  26. 26.
    A. Scherer and H.G. Craighead,Appl. Phys. Lett. 49, 1284 (1986).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 1993

Authors and Affiliations

  • C. R. Eddy
    • 1
  • C. A. Hoffman
    • 1
  • J. R. Meyer
    • 1
  • E. A. Dobisz
    • 1
  1. 1.Naval Research LaboratoryWashington, DC

Personalised recommendations