Skip to main content
Log in

Nanometer fabrication in mercury cadmium telluride by electron cyclotron resonance microwave plasma reactive ion etching

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It has been recently reported (J.R. Meyer, F.J. Bartoli, C.A. Hoffman, and L.R. Ram-Mohan,Phys. Rev. Lett. 64, 1963 [1990]) that novel electronic and optical effects are anticipated in nanometer scale features of narrow band gap semiconductors such as mercury cadmium telluride (MCT). These efforts could lead to the creation of non-linear optical switches, high efficiency infrared lasers, and unique nanoelectronic devices. This work reports on the first realization of MCT nanostructures through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave plasma source. It is shown that the low energy ions produced by an ECR system can etch MCT with good selectivity over an e-beam resist mask and with high resolution. Using these fabrication methods, 40–70 nm features with aspect ratios of 3–5∶1 and sidewall angles greater than 88° have been demonstrated. Qualitative investigations of some of the etch mechanisms of this technique are made, and results suggest a desorption limited process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.L. Roukes, A. Scherer, S.J. Allen, Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe and J.P. Harbison,Phys. Rev. Lett. 59, 3011 (1987).

    Article  CAS  Google Scholar 

  2. A.K. Geim, P.C. Main, P.H. Beton, P. Streda, L. Eaves, C.D.W. Wilkinson and S.P. Beaumont,Phys. Rev. Lett. 67, 3014, 1991).

    Article  CAS  Google Scholar 

  3. L.P. Kouwenhoven, F.W.J. Hekking, B.J. van Wees, C.J.P.M. Harmans, C.E. Timmering and C.T. Foxon,Phys. Rev. Lett. 65, 361 (1990).

    Article  CAS  Google Scholar 

  4. H. van Houten, B.J. van Wees, J.E. Mooij, C.W.J. Beenakker, J.G. Williamson and C.T. Foxon,Europhys. Lett. 5, 721 (1988).

    Article  Google Scholar 

  5. J. Spector, H.J. Stormer, K.W. Baldwin, L.N. Pfeiffer and K.W. West,Appl. Phys. Lett. 56, 2433 (1990).

    Article  CAS  Google Scholar 

  6. P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen and S.J. Wind,Phys. Rev. Lett. 66, 1926 (1991).

    Article  CAS  Google Scholar 

  7. J.R. Meyer, F.J. Bartoli, C.A. Hoffman and L.R. Ram-Mohan,Phys. Rev. Lett. 64, 1963 (1990).

    Article  CAS  Google Scholar 

  8. J.R. Meyer, F.J. Bartoli, C.A. Hoffman and L.R. Ram-Mohan,Superlatt. and Mocrostruct. 7, 387 (1990).

    Article  CAS  Google Scholar 

  9. J.R. Meyer, C.A. Hoffman and F.J. Bartoli,II–VI Semiconductor Compounds, ed. M. Jain, (World Scientific, London, in press).

  10. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel and C.T. Foxon,Phys. Rev. Lett. 60, 848 (1988).

    Article  Google Scholar 

  11. Y. Jaing, M.C. Teich, W.I. Wang and J.R. Meyer,J. Appl. Phys. 71, 3394 (1992).

    Article  Google Scholar 

  12. A. Semu, L. Montelius, P. Leech, D. Jamieson and P. Silverberg,Appl. Phys. Lett. 59, 1752 (1991).

    Article  CAS  Google Scholar 

  13. J.K. Elkind and G.J. Orloff,J. Vac. Sci. Technol. A10, 1106 (1992).

    Article  CAS  Google Scholar 

  14. J. Asmussen,Handbook of Plasma Processing Technology, eds., S.M. Rossnagel, J.J. Cuomo and W.D. Westwood (Noyes Publications, Park Ridge, NJ, 1990), p. 285.

    Google Scholar 

  15. G.F. Doughty, R. Cheung, M.A. Foad, M. Rahman, N.I. Cameron, N.P. Johnson, P.D. Wang and C.D.W. Wilkinson,Photons and Low Energy Particles in Surface Processing, eds. C.J.H. Ashby, J.H. Brannon and S.W. Pang,MRS Symp. Proc. 236, 223 (1992).

    CAS  Google Scholar 

  16. G. Bahir and E. Finkman,J. Vac. Sci. Technol. A7, 348 (1989).

    CAS  Google Scholar 

  17. O.J. Glembocki and E.A. Dobisz,J. Vac. Sci. Technol. A9, 1410 (1991).

    Article  Google Scholar 

  18. G.S. Oehrlein,Handbook of Plasma Processing Technology, eds. S.M. Rossnagel, J.J. Cuomo and W.D. Westwood (Noyes Publications, Park Ridge, NJ, 1990), p. 196.

    Google Scholar 

  19. R. Cheung, S. Thoms, S.P. Beamout, G. Doughty, V. Law and C.D.W. Wilkinson,Electron. Lett. 23, 857 (1987).

    Article  Google Scholar 

  20. L. Henry, C. Vandry and P. Granjoux,Electron. Lett. 23, 1253 (1987).

    Article  Google Scholar 

  21. T.R. Hayes, M.A. Dreisback, P.M. Thomas, W.C. Dautremont-Smith and L.A. Heimbrook,J. Vac. Sci. and Technol. B47, 1130 (1989).

    Google Scholar 

  22. A. Semu and P. Silverberg,Semicond. Sci. Technol. 6, 287 (1991).

    Article  CAS  Google Scholar 

  23. C.J. Mogab and H.J. Levinstein,J. Vac. Sci. Technol. 17, 721 (1980).

    Article  CAS  Google Scholar 

  24. C.R. Eddy, Jr., E.A. Dobisz, C.A. Hoffman and J.R. Meyer,Appl. Phys. Lett. 62, 2362 (1993).

    Article  CAS  Google Scholar 

  25. G. Franz,J. Electrochem. Soc. 137, 2896 (1990).

    Article  CAS  Google Scholar 

  26. A. Scherer and H.G. Craighead,Appl. Phys. Lett. 49, 1284 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

*Code 6675,Code 5613,Code 6864

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddy, C.R., Hoffman, C.A., Meyer, J.R. et al. Nanometer fabrication in mercury cadmium telluride by electron cyclotron resonance microwave plasma reactive ion etching. J. Electron. Mater. 22, 1055–1060 (1993). https://doi.org/10.1007/BF02817524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817524

Key words

Navigation