Journal of Electronic Materials

, Volume 22, Issue 8, pp 865–871 | Cite as

Effects of growth rate and mercury partial pressure on twin formation in HgCdTe (111) layers grown by metalorganic chemical vapor deposition

  • K. Shigenaka
  • L. Sugiura
  • F. Nakata
  • K. Hirahara
Special Issue Paper


The relationship between twin formation and the growth conditions for (111) HgCdTe epitaxial layers grown by metalorganic chemical vapor deposition was investigated. The existence of twins was confirmed by x-ray diffraction and cross-sectional transmission electron microscopy. The x-ray diffraction intensity of the 180°ø rotated 422 asymmetric reflection with that of the 422 asymmetric reflection was compared to detect the presence of twins. The layer obtained using a low growth rate and a low Hg partial pressure showed double-positioning (DP) twins. The twins became lamellar as the growth rate increased. Twin-free HgCdTe epitaxial layers were obtained under a high growth rate and a high Hg partial pressure. These results suggest a model for twin formation based on the difference in the growth mechanism of HgTe and CdTe. Twin-free (111) HgCdTe epitaxial layers were reproducibly obtained without using inclined substrates by optimizing the growth conditions by using this model.

Key words

CdTe HgCdTe MOVPE TEM twin formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Cinader, A. Raizman and M. Oron,J. Cryst. Growth 101, 167 (1990).CrossRefGoogle Scholar
  2. 2.
    P. Capper, C.D. Maxey, P.A.C. Whiffin and B.C. Easton,J. Cryst. Growth 96, 519 (1989).CrossRefGoogle Scholar
  3. 3.
    J.P. Faurie, R. Sporken, S. Sivananthan and M.D. Lange,J. Cryst. Growth 111, 698 (1991).CrossRefGoogle Scholar
  4. 4.
    G. Cinader, A. Raizman and A. Sher,J. Vac. Sci. Technol. B 9, 1634 (1991).Google Scholar
  5. 5.
    R.J. Koestner and H.F. Schaake,J. Vac. Sci. Technol. A6, 2834 (1988).Google Scholar
  6. 6.
    M.J. Bevan, N.J. Doyle and T.A. Temofonte,J. Appl. Phys. 71, 204 (1992).CrossRefGoogle Scholar
  7. 7.
    I.B. Bhat and S.K. Ghandhi,J. Cryst. Growth 75, 241 (1986).CrossRefGoogle Scholar
  8. 8.
    J.M. Arias, S.H. Shin, J.T. Cheung, J.S. Chen, S. Sivananthan, J. Reno and J.P. Faurie,J. Vac. Sci. Technol. A5, 3133 (1987).Google Scholar
  9. 9.
    L. Di Cioccio, A. Million, J. Piaguet, G. Rolland, G. Lentz, N. Magnea and H. Mariette,J. Cryst. Growth 95, 552 (1989).CrossRefGoogle Scholar
  10. 10.
    K.A. Harris, T.H. Myers, R.W. Yanka, L.M. Mohnkern, R.W. Green and N. Otsuka,J. Vac. Sci. Technol. A8, 1013 (1990).Google Scholar
  11. 11.
    R.W. Yanka, K.A. Harris, L.M. Mohnkern and T.H. Myers,J. Cryst. Growth 111, 715 (1991).CrossRefGoogle Scholar
  12. 12.
    K. Shigenaka, T. Kanno, M. Saga, T. Uemoto, L. Sugiura, K. Ichizono and K. Hirahara,J. Cryst. Growth 117, 49 (1992).CrossRefGoogle Scholar
  13. 13.
    K. Shigenaka, T. Uemoto, L. Sugiura, K. Ichizono, K. Hirahara, T. Kanno and M. Saga,J. Cryst. Growth 117, 37 (1992).CrossRefGoogle Scholar
  14. 14.
    H.F. Schaake and R.J. Koestner,J. Cryst. Growth 86, 452 (1988).CrossRefGoogle Scholar
  15. 15.
    M. Oron, A. Raizman, H. Shtrikman and G. Cinader,Appl. Phys. Lett. 52, 1059 (1988).CrossRefGoogle Scholar
  16. 16.
    J.E. Hails, G.J. Russell, P.D. Brown, A.W. Brinkman and J. Woods,J. Cryst. Growth 86, 516 (1988).CrossRefGoogle Scholar
  17. 17.
    J.C. Phillips,Bonds and Bands in Semiconductors, Academic Press, New York, 1973.Google Scholar
  18. 18.
    B. Ray,II–VI Compounds, 1st Ed., Pergamon Press, Oxford, 1969.Google Scholar
  19. 19.
    M.A. Berding, S. Krishnamurthy and A. Sher,J. Vac. Sci. Technol. B9, 1858 (1991).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1993

Authors and Affiliations

  • K. Shigenaka
    • 1
  • L. Sugiura
    • 1
  • F. Nakata
    • 1
  • K. Hirahara
    • 1
  1. 1.Research and Development CenterToshiba CorporationKawasakiJapan

Personalised recommendations