Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 108, Issue 2, pp 241–247 | Cite as

Gauge interaction of baryons in hidden local symmetry

  • S. Furui
  • R. Kobayashi
  • M. Nakagawa
Article

Summary

The hidden local symmetry of the non-linear sigma model is extended to include baryons. In two papers (M. Bando, T. Kugo and Y. Yamawaki:Phys. Rep.,164, 217 (1988);Prog. Theor. Phys.,73, 1541 (1985)), the low-energy theorems for mesons were successfully reproduced. It seems important to investigate whether some kind of the low-energy theorems for baryons holds in the same framework. Indeed, theS-wave pion-nucleon scattering lengths, the conserved vector currents (CVC) of β-decays of baryons and Sakurai's scenario of the electromagnetic interactions of hadrons are all reproduced. Our interaction Lagrangians are stable under the small variation of each vertex. Thus, they deserve the effective one.

PACS

12.90 Miscellaneous theoretical ideas and models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bando M., Kugo T. andYamawaki Y.,Phys. Rep.,164 (1988) 217;Prog. Theor. Phys.,73 (1985) 1541.MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    Meißner Uif-G.,Phys. Rep.,161 (1988) 213.MATHCrossRefADSGoogle Scholar
  3. [3]
    Weisberger W. I.,Phys. Rev. Lett.,14 (1965) 1047;Phys. Rev.,143 (1966) 1302;Adler A.,Phys. Rev. Lett.,14 (1965) 1051;Phys. Rev.,140 (1965) B736;Tomozawa, Y.,Nuovo Cimento,464 (1966) 707;Weinberg S.,Phys. Rev. Lett.,17 (1966) 616.MATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    Sakurai J. J.,Currents and Mesons (University Chicago Press, Chicago, Ill.) 1969.Google Scholar
  5. [5]
    Bijnens, J., Sonoda H. andWise M. B.,Nucl. Phys. B,261 (1985) 185.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • S. Furui
    • 1
  • R. Kobayashi
    • 2
  • M. Nakagawa
    • 3
  1. 1.Department of PhysicsIbaraki UniversityMitoJapan
  2. 2.Department of MathematicsScience University of TokyoNodaJapan
  3. 3.Department of PhysicsMeijo UniversityNagoyaJapan

Personalised recommendations