Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 77, Issue 3, pp 358–367 | Cite as

Waves, shocks and symmetrization in a nonlinear theory of electrodynamics

  • G. Boillat
  • G. Venturi
Article

Summary

Within the context of a nonlinear formulation of electrodynamics based on the constraintA Μ 2 = ϱ2(AΜtimelike) for the electromagnetic potentialAΜtogether with the usual gauge-invariant electromagnetic-field Lagrangian, we study the propagation of weak discontinuities and shocks. Further the structure of the system of differential equations for the different fields is briefly examined.

PACS

11.10 Field theory 

ВОлНы, УДАРНыЕ ВОлНы И сИММЕтРИжАцИь В НЕлИ НЕИНОИ тЕОРИИ ЁлЕктРОДИНАМ ИкИ

РЕжУМЕ

В РАМкАх НЕлИНЕИНОИ Ф ОРМУлИРОВкИ ЁлЕктРОДИНАМИкИ, ОсН ОВАННОИ НА ОгРАНИЧЕНИИA μ 2 =-ϱ2 (АΜ ь ВльЕтсь ВРЕМЕНИпОДО БНыМ) Дль ЁлЕктРОМАгНИтНОгО пОтЕНцИАлА АΜ, ВМЕстЕ с ОБыЧНыМ лАгРАНжИАН ОМ кАлИБРОВОЧНО ИНВАРИ АНтНОгО ЁлЕктРОМАгНИтНОгО п Оль, Мы ИсслЕДУЕМ РАсп РОстРАНЕНИЕ слАБых РАжРыВОВ И УДА РНых ВОлН. РАссМАтРИВАЕтс ь стРУктУРА сИстЕМы ДИФФЕРЕНцИАльНых УР АВНЕНИИ Дль РАжлИЧНы х пОлЕИ.

Riassunto

Nellàmbito di una formulazione non lineare dell’elettrodinamica fondata sul vincolo A Μ 2 , = ϱ2AΜdi tipo tempo) per il potenziale elettromagneticoAΜ insieme all’usuale Lagrangiana invariante di gauge per il campo elettromagnetico, si studia la propagazione di discontinuità deboli e di urti. Si esamina inoltre brevemente la struttura del sistema di equazioni differenziali per i diversi campi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. A. M. Dirac:Proc. B. Soc. London, Ser. A,209, 292 (1951);212, 330 (1952);223, 438 (1954). Let us note that Dieac initially took the electromagnetic potential as proportional to the current velocity four-vector and never searched for particlelike solutions to the equations of motion as is done in ref. (4,5).MathSciNetADSGoogle Scholar
  2. (3).
    E. Schrödinger:Nature (London),169, 538 (1952).CrossRefADSMATHGoogle Scholar
  3. (4).
    R. Righi andG. Venturi:Int. J. Theor. Phys.,21, 63 (1982).MathSciNetCrossRefGoogle Scholar
  4. (5).
    R. Eighi andG. Venturi:Lett. Nuovo Cimento,31, 487 (1981).CrossRefGoogle Scholar
  5. (6).
    P. Garbaczewski:J. Math. Phys. (N. Y.),24, 341 (1983).MathSciNetCrossRefADSGoogle Scholar
  6. (7).
    Y. Nambu:Prog. Theor. Phys. Suppl., Extra Number, 190 (1968).Google Scholar
  7. (8).
    G. Boillat:J. Math. Phys. (N. Y.),11, 941 (1970);Phys. Lett. A,38, 181 (1972);C. R. Acad. Sci. Ser. A,290, 259 (1982).CrossRefADSGoogle Scholar
  8. (9).
    M. Born andL. Infeld:Proc. R. Soc. London, Ser. A,144, 425 (1934).CrossRefADSGoogle Scholar
  9. (10).
    T. Ruggeri andA. Strumia:Ann. Inst. Henri Poincaré Ser. A,34, 65 (1981), and references therein.MathSciNetMATHGoogle Scholar
  10. (12).
    G. Boillat:C.R. Acad. Sci. Ser. I, 551 (1982).Google Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • G. Boillat
    • 1
    • 4
  • G. Venturi
    • 2
    • 3
  1. 1.Istituto di Matematica Applicata dell’UniversitàBolognaItalia
  2. 2.Istituto di Fisica dell’ UniversitàBologna
  3. 3.Sezione di BolognaItalia Istituto Nazionale di Fisica NucleareItalia
  4. 4.Département de MathématiquesUniversité de ClermontClermont-FerrandFrance

Personalised recommendations