Advertisement

Folia Microbiologica

, Volume 44, Issue 2, pp 131–141 | Cite as

Translational regulation by modifications of the elongation factor Tu

  • B. Kraal
  • C. Lippmann
  • C. Kleanthous
Papers Review

Abstract

EF-Tu fromE. coli, one of the superfamily of GTPase switch proteins, plays a central role in the fast and accurate delivery of aminoacyl-tRNAs to the translating ribosome. An overview is given about the regulatory effects of methylation, phosphorlation and phage-induced cleavage of EF-Tu on its function. During exponential growth, EF-Tu becomes monomethylated at Lys56 which is converted to Me2Lys upon entering the stationary phase. Lys56 is in the GTPase switch-1 regions (residues 49–62), a strongly conserved site involved in interactions with the nucleotide and the 5′ end of tRNA. Methylation was found to attenuate GTP hydrolysis and may thus enhance translational accuracy.In vivo 5–10% of EF-Tu is phosphorylated at Thr382 by a ribosome-associated kinase. In EF-Tu-GTP, Thr382 in domain 3 has a strategic position in the interface with domain 1; it is hydrogen-bonded to Glu117 that takes part in the switch-2 mechanism, and is close to the T-stem binding site of the tRNA, in a region known for many kirromycin-resistance mutations. Phosphorylation is enhanced by EF-Ts, but inhibited by kirromycin. In reverse, phosphorylated EF-Tu has an increased affinity for EF-Ts, does not bind kirromycin and can no longer bind aminoacyl tRNA. Thein vivo role of this reversibles modification is still a matter of speculation. T4 infection ofE. coli may trigger a phage-exclusion mechanism by activation of Lit, a host-encoded proteinase. As a result, EF-Tu is cleaved site-specifically between Gly59-Ile60 in the switch-1 region. Translation was found to drop beyond a minimum level. Interestingly, the identical sequence in the related EF-G appeared to remain fully intact. Although the Lit cleavage-mechanism may eventually lead to programmed cell death, the very efficient prevention of phage multiplication may be caused by a novel mechanisms ofin cis inhibition of late T4 mRNA translation.

Keywords

Elongation Factor Effector Region Inactive Conformation Elongation Cycle Trimethyllysine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel K., Jurnak F.: A complex profile of protein elongation: translating chemical energy into molecular movement.Structure4, 229–238 (1996b).PubMedCrossRefGoogle Scholar
  2. Abel K., Yoder M.D., Hilgenfeld R., Jurnak F.: An α to β conformational switch in EF-Tu.Structure4, 1153–1159 (1996a).PubMedCrossRefGoogle Scholar
  3. Aletta J.M., Cimato T.R., Ettinger M.J.: Protein methylation: a signal event in post-translational modification.Trends Biochem. Sci.23, 89–91 (1998).PubMedCrossRefGoogle Scholar
  4. Alexander C., Bilgin N., Lindschau C., Mesters J.R., Kraal B., Hilgenfeld R., Erdmann V.A., Lippmann C.: Phosphorylation of elongation factur Tu prevents ternary complex formation.J. Biol. Chem.270, 14541–14547 (1995).PubMedCrossRefGoogle Scholar
  5. Arai K., Clark B.F.C., Duffy L., Jones M.D., Kaziro Y., Laursen R.A., I'Italien J., Miller D.L., Nagarkatti S., Nakamura S., Nielsen K.M., Petesen T.E., Takayashi K., Wade M.: Primary structure of elongation factor Tu fromEscherichia coli.Proc. Nat. Acad. Sci. USA77, 1326–1330 (1980).PubMedCrossRefGoogle Scholar
  6. Berchtold H., Reshetnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R.: Crystal structure of active elongation factor Tu reveals major domain rearrangements.Nature365, 126–132 (1993).PubMedCrossRefGoogle Scholar
  7. Blumenthal T., Douglass J., Smith D.: Conformational alteration of protein synthesis elongation factor FE-Tu by EF-Ts and kirromycin.Proc. Nat. Acad. Sci. USA74, 3264–3267 (1977).PubMedCrossRefGoogle Scholar
  8. Bosch L., Kraal B., Van der Meide P.H., Duisterwinkel F.J., Van Noort J.M.: The elongation factor EF-Tu and its two encoding genes.Progr. Nucl. Acids Res. Molec. Biol.30, 91–126 (1983).CrossRefGoogle Scholar
  9. Bourne H.R., Sanders D.A., Mccormick F.: The GTPase superfamily: conserved structure and molecular mechanism.Nature349, 117–127 (1991).PubMedCrossRefGoogle Scholar
  10. Caldas T.D., El Yaagoubi A., Richarmer G.: Chaperone properties of bacterial elongation factor EF-Tu.J. Biol. Chem.273, 11478–11482 (1998).PubMedCrossRefGoogle Scholar
  11. Chang Y.W.E., Traugh J.A.: Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation.J. Biol. Chem.272, 28252–28257 (1997).PubMedCrossRefGoogle Scholar
  12. Chang Y.W.E., Traugh J.A.: Insulin stimulation of phosphorylation of elongation factor 1 (eEF-1) enhances elongation activity.Eur. J. Biochem.251, 201–207 (1998).PubMedCrossRefGoogle Scholar
  13. Dever T.E., Costello C.E., Owens C.L., Rosenberry T.L., Merrick W.C.: Location of seven post-translational modifications in rabbit elongation factor 1α including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine.J. Biol. Chem.264, 20518–20525 (1989).PubMedGoogle Scholar
  14. Georgiou T., Yu Y.T.N., Ekunwe S., Buttner M.J., Zuurmond A.M., Kraal B., Kleanthous C., Snyder L.: Specific peptideactivated proteolytic cleavage ofEscherichia coli elongation factor Tu.Proc. Nat. Acad. Sci. USA95, 2891–2895 (1998).PubMedCrossRefGoogle Scholar
  15. Hughes S.M.: Are guanine nucleotide binding proteins a distinct class of regulatory proteins?.FEBS Lett.164, 1–8 (1983).PubMedCrossRefGoogle Scholar
  16. Kawashima T., Berthetcolominas C., Wulff M., Cusack S., Leberman R.: The structure of theEscherichia coli EF-Tu:EF-Ts complex at 2.5 ångstrom resolution.Nature379, 511–518 (1996).PubMedCrossRefGoogle Scholar
  17. Kjeldgaard M., Nissen P., Thirup S., Nyborg J.: The crystal structure of elongation factor EF-Tu fromThermus aquaticus in the GTP conformation.Structure1, 35–50 (1993).PubMedCrossRefGoogle Scholar
  18. Kraal B., Zeff L.A.H., Mesters J.R., Boon K., Vorstenbosch E.L.H., Bosch L., Anborgh P.H., Parmeggiani A., Hilgenfeld R.: Antibiotic resistance mechanisms of mutant EF-Tu species inEscherichia coli.Biochem. Cell. Biol.73, 1167–1177 (1995).PubMedCrossRefGoogle Scholar
  19. Kudlicki W., Coffman A., Kramer G., Hardesty B.: Renaturation of rhodanese by translational elongation factor EF-Tu. Protein refolding by EF-Tu flexing.J. Biol. Chem.272, 32206–32209 (1997).PubMedCrossRefGoogle Scholar
  20. Mesters J.R., Zeef L.A.H., Hilgenfeld R., de Graaf J.M., Kraal L., Bosch L.: The structural and functional basis for the kirromycin resistance of mutant EF-Tu species inEscherichia coli.EMBO J.13, 4877–4885 (1994).PubMedGoogle Scholar
  21. Lippmann C., Lindschau C., Vijgenboom E., Schroder W., Bosch L., Erdmann V.A.: Prokaryotic elongation factor Tu is phosphorylatedin vivo.J. Biol. Chem.268, 601–607 (1993).PubMedGoogle Scholar
  22. Mukulík K., Janda I.: Protein kinase associated with ribosomes phosphorylates ribosomal proteins ofStreptomyces collinus.Biochem. Biophys. Res. Commun.238, 370–376 (1997).CrossRefGoogle Scholar
  23. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F.C., Nyborg J.: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.Science270, 1464–1472 (1995).PubMedCrossRefGoogle Scholar
  24. Nissen P., Kjeldgaard M., Thirup S., Clark B.F.C., Nyborg J.: The ternary complex of aminoacylated tRNA and EF-Tu GTP: recognition of a bond and a fold.Biochimie78, 921–933 (1996).PubMedCrossRefGoogle Scholar
  25. Nygård O., Nilsson L.: Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis.Eur. J. Biochem.191, 1–17 (1990).PubMedCrossRefGoogle Scholar
  26. Parmeggiani A., Swart G.W.M.: Mechanism of action of kirromycin-like antibiotics.Ann. Rev. Microbiol.39, 557–577 (1985).CrossRefGoogle Scholar
  27. Peters H.I., Chang Y.W.E., Traugh J.A.: Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity.Eur. J. Biochem.234, 550–556 (1995).PubMedCrossRefGoogle Scholar
  28. Plath T., Knudsen C., Bilgin N., Lindschau C., Erdmann V., Lippmann C.: Threonine 382 is essential for EF-Tu function, pp. 9–10 inAbstr. Book 17th Internat. tRNA Workshop, Chiba (Japan) 1997.Google Scholar
  29. Polekhina G., Thirup S., Kjeldgaard M., Nissen P., Lippmann C., Nyborg J.: Helix unwinding in the effector region of elongation factor EF-Tu-GDP.Structure4, 1141–1151 (1996).PubMedCrossRefGoogle Scholar
  30. Robertson E.S., Aggison L.A., Nicholson A.W.: Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infectedEscherichia coli.Mol. Microbiol.11, 1045–1057 (1994).PubMedCrossRefGoogle Scholar
  31. Van der Meide P.H., Vijgenboom E., Dicke M., Bosch L.: Regulation of the expression oftufA andtufB, the two genes coding for the elongation factor EF-Tu inEscherichia coli.FEBS Lett.139, 325–330 (1982).PubMedCrossRefGoogle Scholar
  32. Van Noort J.M., Kraal B., Sinjorgo K.M.C., Persoon N.L.M., Johanns E.S.D., Bosch L.: Methylationin vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis.Eur. J. Biochem.160, 557–561 (1986).PubMedCrossRefGoogle Scholar
  33. Vorstenbosch E., Pape T., Rodnina M.V., Kraal B., Wintermeyer W.: The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.EMBO J.15, 6766–6774 (1996).PubMedGoogle Scholar
  34. Wittinghofer A., Frank R., Leberman R.: Composition and properties of trypsin-cleaved elongation factor Tu.Eur. J. Biochem.108, 423–431 (1980).PubMedCrossRefGoogle Scholar
  35. Young C.C., Bernlohr R.W.: Elongation factor Tu is methylated in response to nutrient deprivation inEscherichia coli.J. Bacteriol.173, 3096–3100 (1991).PubMedGoogle Scholar
  36. Yu Y.T.N., Snyder L.: Translation elongation factor Tu cleaved by a phage-exclusion system.Proc. Nat. Acad. Sci. USA91, 802–806 (1994).PubMedCrossRefGoogle Scholar
  37. Zeidler W., Schirmer N.K., Egle C., Ribeiro S., Kreutzer R., Sprinzl M.: Proteolysis and amino acid replacements in the effector region ofThermus thermophilus elongation factor Tu.Eur. J. Biochem.239, 265–271 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  1. 1.Department of Biochemistry, LICLeiden UniversityLeidenNetherlands
  2. 2.Institute of BiochemistryFree University BerlinGermany
  3. 3.School of Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations