Molecular and Chemical Neuropathology

, Volume 33, Issue 1, pp 1–14 | Cite as

Effects of soman-induced convulsions on phosphoinositide metabolism

  • Margaret G. Filbert
  • Jeffry S. Forster
  • Sorabe Phann
  • Gerald P. H. Ballough
Original Articles


Turnover of [3H]phosphoinositides (PI) was examined in brain slices from the hippocampus of rats undergoing soman-induced seizure activity. Hydrolysis of PI was determined by measuring the accumulation of [3H]inositol-1-phosphate (IP1). Incubation of hippocampal slices in the presence of carbachol or norepinephrine (NE) increased PI hydrolysis. Stimulated hydrolysis by NE, but not carbachol was significantly reduced in slices from soman-challenged rats undergoing convulsive activity. NE-stimulated PI hydrolysis was not reduced in slices from animals exposed to soman that did not exhibit convulsive activity. In rats surviving for 24 h, the response to NE was not different from control rats. In control slices, NE-stimulated hydrolysis of PI was potentiated by GABA. No potentiation by GABA was seen in slices from animals undergoing seizures. Uptake and incorporation ofmyo-[2-3H]inositol into phospholipids was reduced in slices from rats undergoing convulsions. Reduced IP1 production appeared to be owing, in part, to decreased synthesis of inositol lipids. These observations suggest that during soman-induced seizure activity, there is an apparent decrease in the response of the PI second messenger system to NE stimulation, and that this may contribute to the severity and duration of convulsions and brain damage resulting from exposure to soman and other anticholinesterase compounds.

Index Entries

Soman hippocampus convulsions seizures phosphoinositides inositol norepinephrine carbachol GABA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballough G. P. H., Martin L. J., Cann F. J., Graham J. S., Smith C. D., Kling C. E., Forster J. S., Phann S., and Filbert M. G. (1995) Microtubule-associated protein 2 (MAP-2): a sensitive marker of seizure-related brain damage.J. Neurosci. Methods 61, 23–32.PubMedCrossRefGoogle Scholar
  2. Baubichon D., Bourjaillat M., Kerhoas F., and Blanchet G. (1988) Effects of soman on phospholipid metabolism containing inositol in rat hippocampus.Travaux Scientifiques des Chercheurs du Service de Sante des Armees 9, 111, 112.Google Scholar
  3. Baudry M., Evans J., and Lynch G. (1986) Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus.Nature 319, 329–331.PubMedCrossRefGoogle Scholar
  4. Bengzon J., Kokaia M., Brudin P., and Lindvall O. (1990) Seizure suppression in kindling epilepsy by intrahippocampal LC grafts. Evidence for an α-2-adrenoceptor mediated mechanism.Exp. Brain Res. 81, 433–437.PubMedCrossRefGoogle Scholar
  5. Berridge M. J. (1984) Inositol trisphosphate and diacylglycerol as second messengers.Biochem. J. 220, 345–360.PubMedGoogle Scholar
  6. Berridge M. J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers.Annu. Rev. Biochem. 56, 159–193.PubMedGoogle Scholar
  7. Berridge M. J., Downes C. P., and Hanley M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands.Biochem. J. 206, 587–595.PubMedGoogle Scholar
  8. Bodjarian N., Lallement G., Carpentier P., Baubichon D., and Blanchet G. (1992) Soman-induced phosphoinositide hydrolysis in rat hippocampal slices: biochemical characterization.Neurotoxicology 13, 715–722.PubMedGoogle Scholar
  9. Bodjarian N., Larpentier P., Blanchet G., Baubichon D., and Lallement G. (1993) Cholinergic activation of phosphoinositide metabolism during soman-induced seizures.NeuroReport 4, 1191–1193.PubMedGoogle Scholar
  10. Bodjarian N., Carpentier P., Baubichon D., Blanchet G., and Lallement G. (1995) Involvement of non-muscarinic receptors in phosphoinositide signalling during soman-induced seizures.Eur. J. Pharmacol. 289, 291–297.PubMedCrossRefGoogle Scholar
  11. Briere R., Sherwin A. L., Robitaille Y., Olivier A., Quesney L. F., and Reader T. A. (1986) α1-Adrenoceptors are decreased in human epileptic foci.Ann. Neurol. 19, 26–30.PubMedCrossRefGoogle Scholar
  12. Corradetti R., Ruggiero M., Chiarugi V. P., and Pepeu G. (1987) GABA-receptor stimulation enhances norepinephrine-induced polyphosphoinositide metabolism in rat hippocampal slices.Brain Res. 411, 196–199.PubMedCrossRefGoogle Scholar
  13. Curet O. and de Montigny C. (1988) Electrophysiological characterization of adrenoceptors in the rat dorsal hippocampus II. Receptors mediating the effect of synaptically released norepinephrine.Brain Res. 475, 47–57.PubMedCrossRefGoogle Scholar
  14. Drouva S. V., Faivre-Bauman A., Loudes C., Laplante E., and Kordon C. (1991) α1-Adrenergic receptor coupling with phospholipase-C is negatively regulated by protein kinase-C in primary cultures of hypothalamic neurons and glial cells.Endocrinology 129, 1605–1613.PubMedCrossRefGoogle Scholar
  15. Dubeau, F. and Sherwin, A. L. (1989) Adrenergic mediated phosphatidylinositol metabolism is modulated by epileptic discharges in human neocortex.Brain Res. 481, 200–203.PubMedCrossRefGoogle Scholar
  16. Dumuis A., Sebbin M., Haynes L., Pin J.-P., and Bockaert J. (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons.Nature 336, 68–70.PubMedCrossRefGoogle Scholar
  17. El-Etri M. M., Nickell W. T., Ennis M., Skau K. A., and Shipley M. T. (1992) Brain norepinephrine reductions in soman-intoxicated rats: association with convulsions and AChE inhibition, time-course, and relation to the monamines.Exp. Neurol. 118, 153–163.PubMedCrossRefGoogle Scholar
  18. El-Etri M. M., Ennis M., Jiang M., and Shipley M. T. (1993) Pilocarpine-induced convulsions in rats: Evidence for muscarinic receptor-mediated activation of locus coeruleus and norepinephrine release in cholinolytic seizure development.Exp. Neurol. 121, 24–39.PubMedCrossRefGoogle Scholar
  19. Ennis M. and Shipley M. T. (1992) Tonic activation of locus coeruleus neurons by systemic or intracoerulear microinjection of an irreversible acetylcholinesterase inhibitor: increased discharge rate and induction of C-fos.Exp. Neurol. 118, 164–177.PubMedCrossRefGoogle Scholar
  20. Godfrey P. P. and Taghavi Z. (1991) The inhibition of agonist- or depolarization-evoked formation of inositol phosphate by excitatory amino acids in rat cerebral cortex is due to the neurotoxic action of this class of neurotransmitter and is mediated by sodium influx.Neuropharmacology 30, 417–422.PubMedCrossRefGoogle Scholar
  21. Hallcher L. M. and Sherman W. R. (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain.J. Biol. Chem. 255, 10,896–10,901.Google Scholar
  22. Jope R. S. (1991) Activation of phosphoinositide metabolism by cholinergic agents. Contract No: DAMD17-89-C-9037. Final Report, AD #A255245.Google Scholar
  23. Jope R. S. and Li X. (1989) Inhibition of inositol phospholipid synthesis and norepinephrine-stimulated hydrolysis in rat brain slices by excitatory amino acids.Biochem. Pharmacol. 38, 589–596.PubMedCrossRefGoogle Scholar
  24. Jope R. S. and Williams M. B. (1994) Lithium and brain signal transduction systems.Biochem. Pharmacol. 47, 429–441.PubMedCrossRefGoogle Scholar
  25. Jope R. S., Casebolt T. L., and Johnson G. V. W. (1987) Modulation of carbachol-stimulated inositol phospholipid hydrolysis in rat cerebral cortex.Neurochem. Res. 12, 693–700.PubMedCrossRefGoogle Scholar
  26. Jope R. S., Kolasa K., Song L., and Ormandy G. C. (1992) Seizures selectively impair agonist-stimulated phosphoinositide hydrolysis without affecting protein kinase C activity in rat brain.Neurotoxicology 13, 389–400.PubMedGoogle Scholar
  27. Lallement G., Carpentier P., Collet A., Baubichon D., Pernot-Marino P., and Blanchet G. (1992) Extracellular acetylcholine changes in rat limbic structures during soman-induced seizures.Neurotoxicology 13, 557–568.PubMedGoogle Scholar
  28. Lallement G., Carpentier P., Pernot-Marino I., Baubichon D., Collet A., and Blanchet G. (1993) Transient impairment of the GABAergic function during initiation of soman-induced seizures.Brain Res. 629, 239–244.PubMedCrossRefGoogle Scholar
  29. Lemercier G., Carpentier P., Sentenac-Roumanou H., and Morelin P. (1983) Histological and histochemical changes in the central nervous system of the rat poisoned by an irreversible anticholinesterase organophosphorus compound.Acta Neuropathol. 61, 123–129.PubMedCrossRefGoogle Scholar
  30. Li X., Song L., and Jope R. S. (1990) Modulation of phosphoinositide metabolism in rat brain slices by excitatory amino acids, arachidonic acid, and GABA.Neurochem. Res. 15, 725–738.PubMedCrossRefGoogle Scholar
  31. Lipp J. A. (1968) Cerebral electrical activity following soman administration.Arch. Int. Pharmacodyn. 175, 161–169.PubMedGoogle Scholar
  32. Mason S. T. and Corcoran M. E. (1979) Catecholamines and convulsions.Brain Res. 170, 497–507.PubMedCrossRefGoogle Scholar
  33. McDonough J. H. and Shih T-M. (1993) Pharmacological modulation of soman-induced seizures.Neurosci. Biobehav. Rev. 17, 2203–2215.Google Scholar
  34. McDonough J. H., McCleod C. G., and Nipwoda M. T. (1987) Direct microinjection of soman or VX into the amygdala produces repetitive limbic convulsions and neuropathology.Brain Res. 435, 123–137.PubMedCrossRefGoogle Scholar
  35. McLeod C. G. (1985) Pathology of nerve agents: Perspectives on medical management.Fundam. Appl. Toxicol. 5, S10–16.CrossRefGoogle Scholar
  36. McNamara J. O. (1980) Complex neuronal systems: approach to development of new strategies in the treatment of epilepsy.Adv. Neurol. 27, 185–196.PubMedGoogle Scholar
  37. Michell R. H. (1975) Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 415, 81–147.PubMedGoogle Scholar
  38. Mody I., Leung P., and Miller J. J. (1983) Role of norepinephrine in seizure-like activity of hippocampal pyramidal cells maintainedin vitro: alteration by 6-hydroxy-dopamine lesions of norepinephrine-containing system.Can. J. Physiol. Pharmacol. 61, 841–846.PubMedGoogle Scholar
  39. Moore R. Y. and Bloom F. E. (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems.Annu. Rev. Neurosci. 2, 113–168.PubMedCrossRefGoogle Scholar
  40. Nalepa I., Pintor A., Chalecka-Granaszek E., Fortuna S., Michalek H., and Vetulani J. (1993) Effects of excitatory amino acids on inositol phosphate accumulation in slices of the cerebral cortex of young and aged rats.Neurochem. Res. 18, 585–589.PubMedCrossRefGoogle Scholar
  41. Nicoletti F., Iadorola M. J., Wroblewski J. T., and Costa E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with α1-adrenoceptors.Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  42. Nicoletti F., Barbaccia M. L., Iadarola M. J., Pozzi O., and Laird H. E. II. (1986b) Abnormality of α1-Adrenergic receptors in the frontal cortex of epileptic rats.J. Neurochem. 46, 270–273.PubMedCrossRefGoogle Scholar
  43. Olney J. W., Price M. T., Zorumski C. F., and Clifford D. B. (1990) Cholinotoxic syndromes: Mechanism and protection, inProceedings of the Workshop on Convulsions and Related Brain Damage Induced by Organophosphorus Agents. US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, pp. 147–162, AD #A222912.Google Scholar
  44. Paulis H. and Kennedy E. P. (1960) The enzymatic synthesis of inositol monophosphatide.J. Biol. Chem. 235, 1303–1311.Google Scholar
  45. Pelletier M. R. and Corcoran M. E. (1993) Infusions of alpha-2-noradrenergic agonists and antagonists into the amygdala: effects on kindling,Brain Res. 632, 29–35.PubMedCrossRefGoogle Scholar
  46. Ruggiero M., Corradetti R., Chiarugi V., and Pepeu G. (1987) Phospholipase C activation induced by noradrenaline in rat hippocampal slices is potentiated by GABA-receptor stimulation.EMBO J. 6, 1595–1598.PubMedGoogle Scholar
  47. Savolainen K. M. and Hirvonen M-R. (1992) Second messengers in cholinergic-induced convulsions and neuronal injury.Toxicol. Letts. 64, 437–445.CrossRefGoogle Scholar
  48. Savolainen K. M., Nelson S. R., Samson F. E., and Pazdernik T. L. (1988) Soman-induced convulsions affect the inositol lipid signaling system: potentiation by lithium; attenuation by atropine and diazepam.Toxicol. Appl. Pharmacol. 96, 305–314.PubMedCrossRefGoogle Scholar
  49. Schoepp D. D., Knepper S. M., and Rutledge C. O. (1984) Norepinephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha1-adrenoceptor.J. Neurochem. 43, 1758–1761.PubMedCrossRefGoogle Scholar
  50. Sherwin A. L., Vernet O., Dubeau F., and Olivier A. (1991) Biochemical markers of excitability in human neocortex.Can. J. Neurol. Sci. 18, 640–644.PubMedGoogle Scholar
  51. Shih T-M. A., Koviak T., Capacio B., and Hayward I. J. (1990) Studies of potential anticonvulsants in soman poisoning, inProceedings of the Workshop on Convulsions and Related Brain Damage Induced by Organophosphorus Agents. US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, pp. 197–221, AD #A222912.Google Scholar
  52. Shih T-M. A., McDonough J. H., and Koplovitz I. (1996) Evaluation of anticonvulsant drugs for soman-induced seizure activity.J. Am. Coll. Toxicol. 15(Suppl. 2), S43-S60.Google Scholar
  53. Shipley M. T., Nickell W. T., and El-Etri M. (1990) Mechanisms of soman-induced seizures and neuropathology, inProceedings of the Workshop on Convulsions and Related Brain Damage induced by Organophosphorus Agents. US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD. pp. 131–143, AD #222912.Google Scholar
  54. Wills H. (1963) Pharmacological antagonists of the anticholinesterase agents, inCholinesterases and Anticholinesterase Agents. Handbch. der Exper. Pharmakol. Erganzungsw, 15 (Koelle G.B., ed.), Springer-Verlag, Berlin, p. 884.Google Scholar
  55. Wu H. Q., Tullii M., Samanin R., and Vizzani A. (1987) Norepinephrine modulates seizures induced by quinolinic acid in rats: selective and distinct roles of α-adrenoceptor subtypes.Eur. J. Pharmacol. 138, 309–318.PubMedCrossRefGoogle Scholar
  56. Yourick D. L., LaPlaca M. C., and Meyerhoff J. L. (1991) Norepinephrine-stimulated phosphatidylinositol metabolism in genetically epilepsy-prone and kindled rats.Brain Res. 551, 315–318.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Margaret G. Filbert
    • 1
  • Jeffry S. Forster
    • 1
  • Sorabe Phann
    • 1
  • Gerald P. H. Ballough
    • 1
  1. 1.Neurotoxicology Branch, Pharmacology divisionUS Army Medical Research Institute of Chemical DefenseAberdeen Proving Ground

Personalised recommendations