Skip to main content
Log in

Physiological similarity and bioreactor scale-up

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

An economically effective transfer of biological processes from laboratory to production scale is the main task of microbial process engineering. In contrast to the principle of geometrical, chemical, thermal, hydrodynamic or chemical similarity, recommended for scale-up of chemical reactors we propose the principle of physiological similarity. According to this principle same the microenvironment of the living cell must be established to reproduce the same physiological function (e.g. growth, product formation or substrate consumption rates) in the large scale bioreactor as in the laboratory one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

exponent in rate equations (see Table II)

b :

birth rate

c :

specific heat

C :

concentration

d :

death rate or impeller diameter

D :

diffusion coefficient or diameter

g :

gravity constant

k, K :

kinetic constants (see Table II)

kLa:

aeration capacity

L :

length

n :

rotation speed

p, P :

pressure (quantity and dimension)

R :

reaction rate

S R :

reaction heat

v, V :

velocity (quantity and dimension)

Y :

yield coefficient

α,β:

coefficients of interface heat and mass transfer

ρ:

density

μ:

viscosity

σ:

surface tension

∇:

Laplace operator

Δ:

difference operator

References

  • Aiba S., Humphrey A., Millis N.:Biochemical Engineering. Academic Press, New York 1973.

    Google Scholar 

  • Aivasidis A., Wandrey C.: Development and scale-up of a high-rate biogass process for treatment of organically polluted effluents.Ann. N.Y. Acad. Sci.589, 599–612 (1990).

    Article  CAS  Google Scholar 

  • Andre G., Robinson C.W., Moo-Young M.: New criteria for application of well mixed model to gas-liquid mass transfer studies.Chem. Eng. Sci.38, 1845–1854 (1983).

    Article  CAS  Google Scholar 

  • Anonymous—compiled and edited by Chemical Engineering:Modern Cost Engineering. Methods and Data. McGraw Hill, New York 1979.

    Google Scholar 

  • Asai T., Sawada H., Yamaguchi T., Suzuki M., Higashide E., Uchida M.: The effect of mechanical damage on the production of maridomycin byStreptomyces hygroscopicus.J. Ferment. Technol.56, 374–379 (1978).

    CAS  Google Scholar 

  • Atkinson B.:Biochemical Reactors. Pion Press, London 1974.

    Google Scholar 

  • Atkinson B., Mavituna F.:Biochemical Engineering and Biotechnology Handbook. Nature Press, Mac Millan, Surrey 1983.

    Google Scholar 

  • Bailey J.E., Ollis D.F.:Biochemical Engineering Fundamentals. McGraw Hill, New York 1987.

    Google Scholar 

  • Bajpai R.K., Reuss M.: Consideration of macromixing and micromixing in semibatch stirred bioreactors, pp. 555–565 inChemical Reaction Engineering, ACS Symp. Series 196 (J. Wei, C. Georgalis, Eds). Amer. Chem. Society, Washington 1981.

    Google Scholar 

  • Baker K.: Design, construction and operation of some all-glass pilot plant fermenters.Biotechnol. Bioeng.20, 1345–1375 (1978).

    Article  Google Scholar 

  • von Bertalanffy L.:Biophysik des Fliessgleichgewichts. Vierveg, Braunschweig 1953.

    Google Scholar 

  • Bard Y.:Nonlinear Parameter Estimation. Academic Press, New York 1974.

    Google Scholar 

  • Bazin J.M., Prosser J.I. (Eds.):Physiological Models in Microbiology, Vol. I and II. CRC Press, Boca Raton 1988.

    Google Scholar 

  • Bhavaraju S.M., Blanch H.W.: Mass transfer in mycelial pellets. J. Ferment. Technol.53, 413–414 (1975).

    Google Scholar 

  • Biryukov V.V., Bylinkina E.S., Voroshilova I.A.: Studies of mass transfer in fermenters in connection with scale-up of microbiological processes.Biotechnol. Bioeng. Symp.4, 413–425 (1973).

    Google Scholar 

  • Biryukov V.V., Kantere V.M.:Optimization of Batch Processes of Microbial Synthesis. (In Russian) Nauka, Moscow 1985.

    Google Scholar 

  • Blanch H., Bhavaraju S.: Bioengineering report: Non Newtonian fermentation broths: Rheology and mass transfer.Biotechnol. Bioeng.18, 745–790 (1979).

    Article  Google Scholar 

  • Bosnjak S., Stroj A., Curcic M., Adamovic V., Gluncic Z., Brava D., Johanides V.: Application of scale-down experiments in the study of oxytetracycline biosynthesis.Biotechnol. Bioeng.27, 398–408 (1985).

    Article  CAS  Google Scholar 

  • Bright S., Adair J., Secher D.: From laboratory to clinic: The development of an immunological reagent.Immunol. Today12, 130–134 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Bronnemeir R., Markl H.: Hydrodynamic stress capacity of microorganisms.Biotechnol. Bioeng.24, 553–578 (1982).

    Article  Google Scholar 

  • van Brunt J.: Scale-up: The next hurdle.Bio/Technology3, 419–423 (1985).

    Article  Google Scholar 

  • van Brunt J.: Fermentation economics.Bio/Technology4, 395–401 (1986).

    Article  Google Scholar 

  • Bushell M.E.: Growth, product formation and fermentation technology, pp. 186–217 inActinomycetes in Biotechnology (M. Goodfellow, S.T. William, M. Mordarski, Eds). Academic Press, San Diego 1988.

    Google Scholar 

  • Cadman T.W.: Advances in bioreactor control, pp. 477–508 inRecombinant DNA Technology and Applications (A. Prokop, R.H. Bajpai, C. Ho, Eds). Mc Graw Hill, New York 1991.

    Google Scholar 

  • Charles M.: Technical aspects of the rheological properties of microbial cultures.Adv. Biochem. Eng.8, 1–62 (1978).

    CAS  Google Scholar 

  • Charles M.: Fermentation scale-up: Problem and possibilities.Trends. Biotechnol.3, 134–140 (1985).

    Article  CAS  Google Scholar 

  • Cirlin A.M., Mironova V.A., Krylov J.M.:Segregation Processes in Chemical Industry. (In Russian) Khimiya, Moscow 1986.

    Google Scholar 

  • Clementi E., Chin S., Corongiu G., Detrich J.H., Dupuis M., Folsom D., Lie G.C., Logan D., Sonnad V.: Supercomputing and super computers for science and engineering in general and for chemistry and biosciences in particular, pp. 1–112 inBiological and Artificial Intelligence Systems (E. Clementi, S. Chin, Eds). ESCOM Science Publisher, Leiden 1988.

    Google Scholar 

  • Cooke F., Williams N.: Stainless steel in biochemical plants.Process Biochem.6, 19–24 (1967).

    Google Scholar 

  • Crueger W. (Ed.): The interaction between dissolved gases and microorganisms in the bioreactor, pp. 93–143 inPhysical Aspects of Bioreactor Performance. Dechema, Frankfurt 1987.

    Google Scholar 

  • Dang N.D.P., Dunn I.J., Mor J.R.: Modelling of dynamic biological processes with empirical transfer function.J. Ferment. Technol.53, 885–894 (1975).

    Google Scholar 

  • Dorokchov I.N., Kaearov V.V.:System Analysis in Chemical Technology, Vol. 8. (In Russian) Nauka, Moscow 1989.

    Google Scholar 

  • Dubois D., Prade H.:Theorie des possibilites Manson, Paris 1988.

    Google Scholar 

  • Ettler P.: Scale-up and scale down techniques for fermentation of polyene antibiotics.Coll. Czech. Chem. Comm.55, 1730–1740 (1990).

    Article  CAS  Google Scholar 

  • Einsele A.: Scaling-up, of bioreactors, theory and reality.Abstr. 5th Int. Ferment. Symp. p. 69 (H. Dellweg, Ed.). Inst Garungsgewerbe und Biotechnologie, Berlin 1976.

    Google Scholar 

  • Einsele A., Samhaber W., Finn R.K.:Mikrobiologische und biochemische Verfahrenstechnik. Verlag Chemie, Weinheim, 1985.

    Google Scholar 

  • Einsele A.: Scaling-up of bioreactors.Process Biochem. 13–14 (1978).

  • Finn R.K., Fiechter A.: The influence of microbial physiology on reactor design.Proc. Microb. Technol.29, 84–105 (1979).

    Google Scholar 

  • Fredrickson A.G., Tsuchiya H.M.: Microbial kinetics and dynamics, pp. 404–483 inChemical Reactor Theory (L. Lapidus, N.R. Amundson, Eds.), Prentice Hall, Englewood Cliffs, New Jersey 1977.

    Google Scholar 

  • Fredrickson A.G., Ramkrishna D., Tsuchiya H.: Statistics and dynamics of procaryotic cell population.Math. Biosci.1, 327–374 (1968).

    Article  Google Scholar 

  • Fukuda H., Sumino Y., Kanzaki T.: Scale-up of fermentors. II. Modified equations for power requirement.J. Ferment. Technol.46, 836–845 (1968).

    Google Scholar 

  • Gordejev L., Krumov A.: Principles of scale-up of column-type bioreactors, pp. 66–69 inProc. 3rd Int. School Automation of Biotechnological Processes and Biological Experiments (S. Tsonkov, Ed.). (In Russian) BAN, Varna 1988.

    Google Scholar 

  • Hacking A.J.:Economic Aspects of Biotechnology. Cambridge University Press, Cambridge 1986.

    Google Scholar 

  • Hamer G., Heitzer A.: Fluctuation environmental conditions in scaled-up bioreactors.Ann. N.Y. Acad. Sci.589, 650–664 (1990).

    Article  CAS  Google Scholar 

  • Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel A.W.:Robust Statistics. The Approach Based on Influence Function: J. Wiley, New York 1986.

    Google Scholar 

  • Hartmann K., Adoplhi H., Berger W., Budde K., Reber E.O., Schenk R., Strauss A.:Prozess Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie. Leipzig 1979.

    Google Scholar 

  • Hartmann K., Slinko M.G.:Methode und Programme zur Berechnung chemischer Reaktoren. Akademie Verlag, Berlin 1972.

    Google Scholar 

  • Himmelblau D.M., Bischoff K.B.:Process Analysis and Simulation, pp. 168. J. Wiley, New York 1968.

    Google Scholar 

  • Himmelblau D.M.:Process Analysis by Statistical Methods. J. Wiley, New York 1970.

    Google Scholar 

  • Horák J., Pašek J.:Design of Chemical Reactors Based on Laboratory Data. (Czech edition) SNTL, Prague 1980.

    Google Scholar 

  • Hubbard D.W.: Scale-up strategies for bioreactor containing non-Newtonian broths.Ann. N.Y. Acad. Sci.506, 600–607 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hubbard D.W., Harris L.R., Wierenga M.K.: Scale-up for polysaccharide fermentation., Paper 175-Preprint inAmer. Inst. Chem. Eng. Ann. Meet., New York 1987.

  • Ito M., Moriyama A., Murakami H.: Effects on cell proliferation of metabolites produced by cultured cells and their removal from culture in defined media. pp. 437–442 inGrowth and Differentiation of Cells in Defined Environment (H. Murami, Ed.). Springer Verlag, Berlin 1985.

    Google Scholar 

  • Imanaka T.: A perspective on the application of genetic engineering—stability of recombinant plasmid.Ann. Rep. JCME (Osaka University, Japan)5, 461–473 (1982).

    Google Scholar 

  • Irving G.: Construction metals for breweries.Chem. Eng. 100–114 (1980).

  • Jones R.P., Greenfield P.F.: Effect of carbon dioxide on yeast growth and fermentation.Enzyme Microb. Technol.4, 210–223 (1982).

    Article  CAS  Google Scholar 

  • Kafarov V.V., Vinarov A.J., Gordeev L.S.:Modelling of Biochemical Reactors. (In Russian) Lesnaya Promyshlennost, Moscow 1979.

    Google Scholar 

  • Kafarov V.V., Dorokchov I.N., Lipatov I.N.:System Analysis of Processes in Chemical Technology, Vol. 3. (In Russian) Nauka, Moscow 1982.

    Google Scholar 

  • Kennedy M.J.: A review of design of reaction vessels for the submerged culture of micro-organisms.Rep. IP/ISO/1007, Dept. Sci. Ind. Research, Petone (New Zealand) 1984.

    Google Scholar 

  • Khang S.J., Levenspiel O.: New scale-up and design method for stirrer agitated batch mixing vessels.Chem. Eng. Sci.31, 569–577 (1976).

    Article  CAS  Google Scholar 

  • Knorre W.A., Guthke R., Reiman B., Veith G., Bergter F.: Application of the ZIMET computer coupled scale-up fermentation system in antibiotic production, pp. 213–236 inProc. 3rd Symp. Soc. Countries on Biotechnology, Bratislava 1983.

  • Kobayashi T., van Dedem G., Moo Young M.: Oxygen transfer into mycelial pellets.Biotechnol. Bioeng.25, 27–32 (1973).

    Article  Google Scholar 

  • Koloini T.: Heat and mass transfer in industrial fermentation systems, pp. 28–29 inProc. Interbiotech ’89, Bratislava 1989.

  • Konstantinov K., Yoshida T.: Physiological state control of fermentation processes.Biotechnol. Bioeng.33, 1145–1156 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Kossen N.W.F., Metz B.: The influence of shear upon the morphology of moulds, p. 78 inProc. 5th Int. Ferment. Symp. (H. Dellweg, Ed.), Inst. Garunsgewerbe und Biotechnologie, Berlin 1976.

    Google Scholar 

  • Kovanic P.: Gnostical theory of small samples of real data.Probl. Contr. Inform. Theory13, 303–319 (1984).

    Google Scholar 

  • Lapidus L., Amundson N.R. (Eds):Chemical Reactor Theory. Prentice Hall, Englewood Cliffs, New Jersey 1978.

    Google Scholar 

  • Lejsek T., Kahler M.: Cylindro-conical tanks in brewery. (In Czech)Kvasný Prům.36,Suppl. 1-48 (1990).

  • Lilly M.D.: Problems in process scale-up, pp. 79–124 inBioactive Microbial Products 2, (L.J. Nisbet, D.J. Winstanley, Eds). Academic Press, New York 1983.

    Google Scholar 

  • Lubbe C., Demain A.I., Bergman K.: Use of controlled release polymer toStreptomyces clavuligerus cephalosporin fermentation in shake flasks.Appl. Microbiol. Biotechnol.22, 424–427 (1985).

    Article  CAS  Google Scholar 

  • Málek I.: Vectorial methodology of physiological state studies in continuous culture, pp. 702–717 inOverproduction of Microbial Products (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds) Academic Press, London 1982.

    Google Scholar 

  • Málek I., Řičica J., Votruba J.: Continuous cultivation of microorganisms—ecological significance of physiological state studies, pp. 110–126 inContinuous Cultures, Vol. 8 Biotechnology, Medicine and the Environment (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans, Eds.). Ellis Horwood, Chichester 1984.

    Google Scholar 

  • Málek I., Votruba J., Řičica J.: The continuality principle and the role of continuous cultivation of microorganisms in basic research, pp. 95–104 inContinuous Culture (P. Kyslík, A.E. Dawes, V. Krumphanzl, M. Novák, Eds). Academic Press, New York 1988.

    Google Scholar 

  • Marculevich N.A., Protodjakonov J.O., Romankov P.G.: Scale-up in modeling of mass transfer processes in non-ideal mixed reactors. (In Russian]Theor. Found. Chem. Technol.18, 3–7 (1984).

    Google Scholar 

  • Matelová V., Musílková M., Nečásek J., Smejkal F.: Influence of interrupted aeration on chlortetracycline production.Preslia27, 27–34 (1955).

    Google Scholar 

  • Minkevich I.G.: Ion balance in continuous culture. (In Russian)Biofizika24, 712–716 (1979).

    PubMed  CAS  Google Scholar 

  • Minkevich I.G., Sobotka M., Vraná D., Havlík I.: Continuous growth ofCandida utilis under periodic change of growth limiting substrate.Folia Microbiol.35, 251–265 (1990).

    Article  CAS  Google Scholar 

  • Moo Young M., Moreira A.R., Daugulis A.J.: Economics of fermentation processes for SCP production from agricultural wastes.Can. J. Chem. Eng.57, 741–749 (1979).

    CAS  Google Scholar 

  • Moo Young M., Cooney C.L., Humphrey A.E.:Comprehensive Biotechnology, Vol. 2. Pergamon Press, Oxford 1985.

    Google Scholar 

  • Mou D.G.: Biochemical engineering and beta-lactam antibiotic production, pp. 256–284 inHandbook of Experimental Pharmacology, Vol 67/I (A.L. Demain, N.A. Solomon, Eds). Springer Verlag, Berlin 1983.

    Google Scholar 

  • Muraoka H., Watanabe Y., Ogasawa R.: Association of coenzyme-independent alcohol and aldehyde dehydrogenases from the membrane fraction ofAcetobacter aceti and their localization.J. Ferment. Technol.60, 171–180 (1982).

    CAS  Google Scholar 

  • Nagatani M.: Studies on the scale-up of a sake fermentor.J. Ferment. Technol.49, 674–679 (1971).

    CAS  Google Scholar 

  • Naveh D.: Scale-up of fermentation for recombinant DNA products.Food Technol.39, 102–108 (1985).

    CAS  Google Scholar 

  • Nigmatulin R.J.:Principles of Mechanics of Heterogeneous Systems (In Russian) Publ. House Nauka, Moscow 1978.

    Google Scholar 

  • Ogut A., Hatch R.T.: Oxygen transfer into non-Newtonian fluids in mechanically agitated vessels.Can. J. Chem. Eng.66, 79–85 (1988).

    CAS  Google Scholar 

  • Okabe M., Aiba S., Okada M.: The modified complex method as applied to an optimization of aeration and agitation in fermentation.J. Ferment. Technol.51, 594–602 (1973).

    CAS  Google Scholar 

  • Oldshue J.Y.: Shear stress and recombinant fermentations: guidelines for industrial scale-up.Genet. Eng. News3 (6), 46 (1983).

    Google Scholar 

  • Ollis D.F.: Biological reactor design, pp. 484–531 inChemical Reactor Theory, (L. Lapidus, N.R. Amundson, Eds.). Prentice Hall, Englewood Cliffs, New Jersey 1977.

    Google Scholar 

  • Onken U., Jostman T., Weiland P.: Effects of hydrostatic pressure on microbial growth for fermentation process modelling.Proc. 3rd Europ. Cong. Biotechnology, pp. 481–495. Verlag Chemie, Weinheim 1984.

    Google Scholar 

  • Oosterhuis N.M.G., Kossen N.W.F.: Oxygen transfer in a production scale bioreactor.Chem. Eng. Res. Des.61, 308–312 (1983).

    CAS  Google Scholar 

  • Oosterhuis N.M.G., Kossen N.W.F.: Dissolved oxygen profiles in a production scale bioreactor.Biotechnol. Bioeng.26, 546–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Oosterhuis N.M.G., Kossen N.W.F., Olivier A.P.C., Schenk E.S.: Scale-down and optimization studies of gluconic acid fermentation byGluconobacter oxydans.Biotechnol. Bioeng.27, 711–720 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Pirt J.S.:Principles of Microbe and Cell Cultivation. Blackwell, Oxford 1975.

    Google Scholar 

  • Prokop A., Bajpai R.H., Ho C.:Recombinant DNA Technology and Applications, pp. 460–476. McGraw Hill, New York 1991.

    Google Scholar 

  • Pogorelov A.G.:Parameter Estimation in Non-stationary Chemical Kinetics. (In Russian) Nauka, Moscow 1983.

    Google Scholar 

  • Polak L.S., Goldberg M.J., Levickij A.A.:Computation Methods in Chemical Kinetics. (In Russian) Nauka, Moscow 1984.

    Google Scholar 

  • Popovic M., Papalexiou A., Reuss M.: Gas residence time distribution in stirred tank bioreactors.Chem. Eng. Sci.38, 2015–2025 (1983).

    Article  CAS  Google Scholar 

  • Randolph A.D., Larson M.A.:Theory of Particulate Processes: Analysis and Techniques of Continuous Crystalisation. Academic Press, New York 1971.

    Google Scholar 

  • Rehm H.J., Reed G.:Biotechnology, Vol. 6. Verlag Chemie, Weinheim 1986.

    Google Scholar 

  • Reichl U., King R., Gilles E.D.: Characterization of pellet morphology during submerged growth ofStreptomyces tendae by image analysis.Biotechnol. Bioeng.39, 164–170 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Reisman B.:Economic Analysis of Fermentation Processes. CRC Press, Boca Raton (Florida) 1988.

    Google Scholar 

  • Řičica J., Votruba J.: Physiological aspects in development of mathematical models. pp. 675–686 inOverproduction of Microbial Products (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds). Academic Press, London 1982.

    Google Scholar 

  • Rittenhaus E., Ulrich J., Weis A., Westphal K.: Large-scale fermentation of cell plant cultures. Planning, design and development of fermentation plant (75000 liter) for production of plant cells.Bio Engineering5 (1), 8–11 (1989).

    Google Scholar 

  • Ritterhaus E., Ulrich J., Weiss A., Westphal K.: Large-scale fermentation of cell plant cultures. Experiences in cultivation of plant cells in a fermentation cascade up to volume of 75 000 litres.Bio Engineering5 (2), 28–34 (1989)

    Google Scholar 

  • Ritterhaus E., Brummer B., Gaissler H., Weiss A.: Large scale fermentation of cell plant cultures. Optimal process control of a fermentation unit (75000 litres) for plant cell cultures, based on mathematical modelling.Bio Engineering6 (5), 54–70 (1990).

    Google Scholar 

  • Ritterhaus E., Brummer B, Gasser H., Munack A., Posten C.: Large scale fermentation of cell plant cultures. Modelling of growth and parameter estimation for plant cell cultures.Bio Engineering6 (1), 30–43 (1990).

    Google Scholar 

  • Roels J.A., Kossen N.W.F.: On the modelling of microbial metabolism, pp. 98–203 inProgress in Industrial Microbiology, Vol. 14 (M.J. Bull, Ed.) Elsevier, Amsterdam 1978.

    Google Scholar 

  • Roels J.A.: Mathematical models and design of biochemical reactors.J. Chem. Technol. Biotechnol.32, 59–67 (1982).

    Article  Google Scholar 

  • Rosen A.M.:Scale-up in Chemical Technology. (In Russian) Khimiya, Moscow 1980.

    Google Scholar 

  • Harder A., Roels J.A.: Application of simple structured models in bioengineering.Adv. Biochem. Eng.21, 56–107 (1982).

    Google Scholar 

  • Schmidt A.: The technological possibilities for measurement of physiological population state features in fermentation practice.Acta Biotechnol.3, 171–176 (1983).

    Article  Google Scholar 

  • Schwab H.: Strain improvement in industrial microorganisms by recombinant DNA technique.Adv. Biochem. Eng.37, 130–167 (1988).

    Google Scholar 

  • Seichter P., Pesl L., Vranek M., Vagner R.: Performance of large scale bioreactors; Paper A8.3 at10th Int. CHISA Congr., Prague 1990.

  • Sherwood T.K., Pigford R.L., Wilke C.R.:Mass Transfer. McGraw Hill, New York 1975.

    Google Scholar 

  • Singh V., Fuchs R., Hensler W., Constantindes A.: Scale-up and optimization of oxygen transfer in fermentors. Newtonian and non-Newtonian systems.Adv. N.Y. Acad. Sci.589, 616–641 (1990).

    Article  CAS  Google Scholar 

  • Slavík J.: Intracellular pH of yeast cells measured with fluorescent probes.FEBS Lett.140, 22–25 (1982).

    Article  PubMed  Google Scholar 

  • Sobotka M., Prokop A., Dunn I., Einsele A.: A review of method for the measurement of oxygen transfer in microbial systems.Ann. Rep. Ferment. Proc.,5, 127–210 (1982).

    CAS  Google Scholar 

  • Sobotka M., Votruba J., Prokop A.: A two-phase oxygen uptake model of aerobic fermentation.Biotechnol. Bioeng.23, 1193–1202 (1981).

    Article  CAS  Google Scholar 

  • Sokolov V.N., Domanskij J.V.:Gas—Liquid Reactors. (In Russian) Publ. House Mashinostroeniye, St. Petersburg 1976.

    Google Scholar 

  • Spier R.E., Griffiths J.B.:Animal Cell Biotechnology. Academic Press, London 1985.

    Google Scholar 

  • Štěrbáček Z., Tausk P.:Mixing in Chemical Industry SNTL, Prague 1959.

    Google Scholar 

  • Štěrbáček Z., Votruba J.: Expert system LISAP in evaluation of control of industrial scale bioreactors.Biochem. Eng. J. in press 91992).

  • Strenk F.:Mixing and Mixers. (In Russian) Khimiya, St. Petersburg 1975.

    Google Scholar 

  • van Suijdam J., Metz B. Fungal pellet breakup as a function of shear in a fermentor.J. Ferment. Technol.59, 329–333 (1981)

    Google Scholar 

  • van Suijdam J., Metz B.: Influence of engineering variables upon the morphology of filamentous molds.Biotechnol. Bioeng.23, 111–124 (1981).

    Article  Google Scholar 

  • Takamatsu T., Shioya S., Okuda K.: A comparison of unstructured growth models of microorganisms.J. Ferment. Technol.59, 131–136 (1981).

    Google Scholar 

  • Ujcová E., Fencl Z., Musílková M., Seichert L.: Dependence of release of nucleotides from fungi on fermentor turbine speed.Biotech. Bioeng.22, 237–246 (1980).

    Article  Google Scholar 

  • Ulrich G.L.:A Guide to Chemical Engineering Process Design and Economics. J. Wiley, New York. 1984.

    Google Scholar 

  • Vardar F.: Problems of mass and momentum transfer in large fermentors. Process Biochem.18 (5), 21–23 (1983).

    Google Scholar 

  • Veksler M.A., Revitch J.V., Shaps J.A.: Experience in scale-up of chemico-pharmaceutical processes. (In Russian)Theor. Osn. Chim. Technol.28, 842–845 (1984).

    Google Scholar 

  • Volesky B., Votruba J.:Modelling and Optimization of Fermentation Processes. Elsevier, Amsterdam 1992.

    Google Scholar 

  • Votruba J., Vaněk Z.: Physico-chemical factors affecting actinomycete growth and secondary metabolism, inRegulation of Secondary Metabolism in Actinomycetes, chapter 8 (S. Shapiro, Ed.) CRC Press, Boca Raton 1989.

    Google Scholar 

  • Vaněk Z., Cudlín J., Blumauerová M., Hošťálek Z., Podojil M., Řeháček Z., Krumphanzl V.:Physiology and Pathophysiology of the Production of Excessive Metabolites. Institute of Microbiology, Prague 1981.

    Google Scholar 

  • Viesturs U.E., Kristapson M.Z., Levitans E.S.: Foam in microbial processes, pp. 170–223 inMicrobes and Engineering Aspects (A. Fiechter, Ed.). Akademie Verlag, Berlin 1982.

    Google Scholar 

  • Vraná D., Votruba J., Placek J.: Age-related changes in the physiological state of budding yeast cells.Exp. Cell Res.138, 57–62 (1982).

    Article  PubMed  Google Scholar 

  • Vraná D., Votruba J., Havlík I., Sobotka M.: Engineering—physiological analysis of transient states in continuous culture ofCandida utilis. (In Czech)Kvasný Prům.31, 188–191 (1985).

    Google Scholar 

  • Vraná D., Votruba J.: Control of the cell cycle ofCandida utilis by external conditions.Folia Microbiol.26, 382–387 (1981).

    Google Scholar 

  • Weekman V.: Industrial process model—state of art.Adv. Chem. Ser.148,Chemical Reaction Engineering, pp. 98–131 (H.M. Hulburt, Ed.). AMCS Press, Washington (DC) 1975.

    Google Scholar 

  • Wittek B., Markl H.: The impact of viscosity and hydrodynamic stress on growth rate of microorganism,Proc. 3rd Europ. Congr. Biotechnology, München, III-513-519, Verlag Chemie, Weinheim 1984.

    Google Scholar 

  • Weide H., Páca J., Knorre W.A.:Biotechnologie, pp. 238–242. G. Fischer Verlag, Jena 1987.

    Google Scholar 

  • Yagi H., Yoshida F.: Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessels.Ind. Eng. Chem. Process Des. Devel.14, 488–494 (1975).

    Article  CAS  Google Scholar 

  • Young B.: Scale-up of genetically engineered products. Preprint of lecture onBIOTECH 84, Washington (DC) 1984.

  • Yao P-X., Ohtake H., Toda K.: Factors affecting conjugative transfer rates of plasmids in a batch and continuous cultures.J. Ferment. Bioeng.69, 215–219 (1990).

    Article  Google Scholar 

  • Yonsel S., Deckwer W.D.: Scale-up of pneumatically operated reactors for oxygen limited fermentation.Bio Engineering6 (3), 12–23 (1990).

    Google Scholar 

  • Zudin D.V., Kantere V.M., Ugodtchikov G.G.:Automatization of Biotechnological Experiments. (In Russian) Vyssaja skola, Moscow 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Votruba, J., Sobotka, M. Physiological similarity and bioreactor scale-up. Folia Microbiol 37, 331–345 (1992). https://doi.org/10.1007/BF02815659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815659

Keywords

Navigation