Folia Microbiologica

, Volume 37, Issue 5, pp 331–345 | Cite as

Physiological similarity and bioreactor scale-up

  • J. Votruba
  • M. Sobotka


An economically effective transfer of biological processes from laboratory to production scale is the main task of microbial process engineering. In contrast to the principle of geometrical, chemical, thermal, hydrodynamic or chemical similarity, recommended for scale-up of chemical reactors we propose the principle of physiological similarity. According to this principle same the microenvironment of the living cell must be established to reproduce the same physiological function (e.g. growth, product formation or substrate consumption rates) in the large scale bioreactor as in the laboratory one.


Dimensionless Group Candida Utilis Physiological Similarity Large Scale Bioreactor Specific Power Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


exponent in rate equations (see Table II)


birth rate


specific heat




death rate or impeller diameter


diffusion coefficient or diameter


gravity constant

k, K

kinetic constants (see Table II)


aeration capacity




rotation speed

p, P

pressure (quantity and dimension)


reaction rate


reaction heat

v, V

velocity (quantity and dimension)


yield coefficient


coefficients of interface heat and mass transfer






surface tension

Laplace operator


difference operator


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiba S., Humphrey A., Millis N.:Biochemical Engineering. Academic Press, New York 1973.Google Scholar
  2. Aivasidis A., Wandrey C.: Development and scale-up of a high-rate biogass process for treatment of organically polluted effluents.Ann. N.Y. Acad. Sci.589, 599–612 (1990).CrossRefGoogle Scholar
  3. Andre G., Robinson C.W., Moo-Young M.: New criteria for application of well mixed model to gas-liquid mass transfer studies.Chem. Eng. Sci.38, 1845–1854 (1983).CrossRefGoogle Scholar
  4. Anonymous—compiled and edited by Chemical Engineering:Modern Cost Engineering. Methods and Data. McGraw Hill, New York 1979.Google Scholar
  5. Asai T., Sawada H., Yamaguchi T., Suzuki M., Higashide E., Uchida M.: The effect of mechanical damage on the production of maridomycin byStreptomyces hygroscopicus.J. Ferment. Technol.56, 374–379 (1978).Google Scholar
  6. Atkinson B.:Biochemical Reactors. Pion Press, London 1974.Google Scholar
  7. Atkinson B., Mavituna F.:Biochemical Engineering and Biotechnology Handbook. Nature Press, Mac Millan, Surrey 1983.Google Scholar
  8. Bailey J.E., Ollis D.F.:Biochemical Engineering Fundamentals. McGraw Hill, New York 1987.Google Scholar
  9. Bajpai R.K., Reuss M.: Consideration of macromixing and micromixing in semibatch stirred bioreactors, pp. 555–565 inChemical Reaction Engineering, ACS Symp. Series 196 (J. Wei, C. Georgalis, Eds). Amer. Chem. Society, Washington 1981.Google Scholar
  10. Baker K.: Design, construction and operation of some all-glass pilot plant fermenters.Biotechnol. Bioeng.20, 1345–1375 (1978).CrossRefGoogle Scholar
  11. von Bertalanffy L.:Biophysik des Fliessgleichgewichts. Vierveg, Braunschweig 1953.Google Scholar
  12. Bard Y.:Nonlinear Parameter Estimation. Academic Press, New York 1974.Google Scholar
  13. Bazin J.M., Prosser J.I. (Eds.):Physiological Models in Microbiology, Vol. I and II. CRC Press, Boca Raton 1988.Google Scholar
  14. Bhavaraju S.M., Blanch H.W.: Mass transfer in mycelial pellets. J. Ferment. Technol.53, 413–414 (1975).Google Scholar
  15. Biryukov V.V., Bylinkina E.S., Voroshilova I.A.: Studies of mass transfer in fermenters in connection with scale-up of microbiological processes.Biotechnol. Bioeng. Symp.4, 413–425 (1973).Google Scholar
  16. Biryukov V.V., Kantere V.M.:Optimization of Batch Processes of Microbial Synthesis. (In Russian) Nauka, Moscow 1985.Google Scholar
  17. Blanch H., Bhavaraju S.: Bioengineering report: Non Newtonian fermentation broths: Rheology and mass transfer.Biotechnol. Bioeng.18, 745–790 (1979).CrossRefGoogle Scholar
  18. Bosnjak S., Stroj A., Curcic M., Adamovic V., Gluncic Z., Brava D., Johanides V.: Application of scale-down experiments in the study of oxytetracycline biosynthesis.Biotechnol. Bioeng.27, 398–408 (1985).CrossRefGoogle Scholar
  19. Bright S., Adair J., Secher D.: From laboratory to clinic: The development of an immunological reagent.Immunol. Today12, 130–134 (1991).PubMedCrossRefGoogle Scholar
  20. Bronnemeir R., Markl H.: Hydrodynamic stress capacity of microorganisms.Biotechnol. Bioeng.24, 553–578 (1982).CrossRefGoogle Scholar
  21. van Brunt J.: Scale-up: The next hurdle.Bio/Technology3, 419–423 (1985).CrossRefGoogle Scholar
  22. van Brunt J.: Fermentation economics.Bio/Technology4, 395–401 (1986).CrossRefGoogle Scholar
  23. Bushell M.E.: Growth, product formation and fermentation technology, pp. 186–217 inActinomycetes in Biotechnology (M. Goodfellow, S.T. William, M. Mordarski, Eds). Academic Press, San Diego 1988.Google Scholar
  24. Cadman T.W.: Advances in bioreactor control, pp. 477–508 inRecombinant DNA Technology and Applications (A. Prokop, R.H. Bajpai, C. Ho, Eds). Mc Graw Hill, New York 1991.Google Scholar
  25. Charles M.: Technical aspects of the rheological properties of microbial cultures.Adv. Biochem. Eng.8, 1–62 (1978).Google Scholar
  26. Charles M.: Fermentation scale-up: Problem and possibilities.Trends. Biotechnol.3, 134–140 (1985).CrossRefGoogle Scholar
  27. Cirlin A.M., Mironova V.A., Krylov J.M.:Segregation Processes in Chemical Industry. (In Russian) Khimiya, Moscow 1986.Google Scholar
  28. Clementi E., Chin S., Corongiu G., Detrich J.H., Dupuis M., Folsom D., Lie G.C., Logan D., Sonnad V.: Supercomputing and super computers for science and engineering in general and for chemistry and biosciences in particular, pp. 1–112 inBiological and Artificial Intelligence Systems (E. Clementi, S. Chin, Eds). ESCOM Science Publisher, Leiden 1988.Google Scholar
  29. Cooke F., Williams N.: Stainless steel in biochemical plants.Process Biochem.6, 19–24 (1967).Google Scholar
  30. Crueger W. (Ed.): The interaction between dissolved gases and microorganisms in the bioreactor, pp. 93–143 inPhysical Aspects of Bioreactor Performance. Dechema, Frankfurt 1987.Google Scholar
  31. Dang N.D.P., Dunn I.J., Mor J.R.: Modelling of dynamic biological processes with empirical transfer function.J. Ferment. Technol.53, 885–894 (1975).Google Scholar
  32. Dorokchov I.N., Kaearov V.V.:System Analysis in Chemical Technology, Vol. 8. (In Russian) Nauka, Moscow 1989.Google Scholar
  33. Dubois D., Prade H.:Theorie des possibilites Manson, Paris 1988.Google Scholar
  34. Ettler P.: Scale-up and scale down techniques for fermentation of polyene antibiotics.Coll. Czech. Chem. Comm.55, 1730–1740 (1990).CrossRefGoogle Scholar
  35. Einsele A.: Scaling-up, of bioreactors, theory and reality.Abstr. 5th Int. Ferment. Symp. p. 69 (H. Dellweg, Ed.). Inst Garungsgewerbe und Biotechnologie, Berlin 1976.Google Scholar
  36. Einsele A., Samhaber W., Finn R.K.:Mikrobiologische und biochemische Verfahrenstechnik. Verlag Chemie, Weinheim, 1985.Google Scholar
  37. Einsele A.: Scaling-up of bioreactors.Process Biochem. 13–14 (1978).Google Scholar
  38. Finn R.K., Fiechter A.: The influence of microbial physiology on reactor design.Proc. Microb. Technol.29, 84–105 (1979).Google Scholar
  39. Fredrickson A.G., Tsuchiya H.M.: Microbial kinetics and dynamics, pp. 404–483 inChemical Reactor Theory (L. Lapidus, N.R. Amundson, Eds.), Prentice Hall, Englewood Cliffs, New Jersey 1977.Google Scholar
  40. Fredrickson A.G., Ramkrishna D., Tsuchiya H.: Statistics and dynamics of procaryotic cell population.Math. Biosci.1, 327–374 (1968).CrossRefGoogle Scholar
  41. Fukuda H., Sumino Y., Kanzaki T.: Scale-up of fermentors. II. Modified equations for power requirement.J. Ferment. Technol.46, 836–845 (1968).Google Scholar
  42. Gordejev L., Krumov A.: Principles of scale-up of column-type bioreactors, pp. 66–69 inProc. 3rd Int. School Automation of Biotechnological Processes and Biological Experiments (S. Tsonkov, Ed.). (In Russian) BAN, Varna 1988.Google Scholar
  43. Hacking A.J.:Economic Aspects of Biotechnology. Cambridge University Press, Cambridge 1986.Google Scholar
  44. Hamer G., Heitzer A.: Fluctuation environmental conditions in scaled-up bioreactors.Ann. N.Y. Acad. Sci.589, 650–664 (1990).CrossRefGoogle Scholar
  45. Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel A.W.:Robust Statistics. The Approach Based on Influence Function: J. Wiley, New York 1986.Google Scholar
  46. Hartmann K., Adoplhi H., Berger W., Budde K., Reber E.O., Schenk R., Strauss A.:Prozess Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie. Leipzig 1979.Google Scholar
  47. Hartmann K., Slinko M.G.:Methode und Programme zur Berechnung chemischer Reaktoren. Akademie Verlag, Berlin 1972.Google Scholar
  48. Himmelblau D.M., Bischoff K.B.:Process Analysis and Simulation, pp. 168. J. Wiley, New York 1968.Google Scholar
  49. Himmelblau D.M.:Process Analysis by Statistical Methods. J. Wiley, New York 1970.Google Scholar
  50. Horák J., Pašek J.:Design of Chemical Reactors Based on Laboratory Data. (Czech edition) SNTL, Prague 1980.Google Scholar
  51. Hubbard D.W.: Scale-up strategies for bioreactor containing non-Newtonian broths.Ann. N.Y. Acad. Sci.506, 600–607 (1987).PubMedCrossRefGoogle Scholar
  52. Hubbard D.W., Harris L.R., Wierenga M.K.: Scale-up for polysaccharide fermentation., Paper 175-Preprint inAmer. Inst. Chem. Eng. Ann. Meet., New York 1987.Google Scholar
  53. Ito M., Moriyama A., Murakami H.: Effects on cell proliferation of metabolites produced by cultured cells and their removal from culture in defined media. pp. 437–442 inGrowth and Differentiation of Cells in Defined Environment (H. Murami, Ed.). Springer Verlag, Berlin 1985.Google Scholar
  54. Imanaka T.: A perspective on the application of genetic engineering—stability of recombinant plasmid.Ann. Rep. JCME (Osaka University, Japan)5, 461–473 (1982).Google Scholar
  55. Irving G.: Construction metals for breweries.Chem. Eng. 100–114 (1980).Google Scholar
  56. Jones R.P., Greenfield P.F.: Effect of carbon dioxide on yeast growth and fermentation.Enzyme Microb. Technol.4, 210–223 (1982).CrossRefGoogle Scholar
  57. Kafarov V.V., Vinarov A.J., Gordeev L.S.:Modelling of Biochemical Reactors. (In Russian) Lesnaya Promyshlennost, Moscow 1979.Google Scholar
  58. Kafarov V.V., Dorokchov I.N., Lipatov I.N.:System Analysis of Processes in Chemical Technology, Vol. 3. (In Russian) Nauka, Moscow 1982.Google Scholar
  59. Kennedy M.J.: A review of design of reaction vessels for the submerged culture of micro-organisms.Rep. IP/ISO/1007, Dept. Sci. Ind. Research, Petone (New Zealand) 1984.Google Scholar
  60. Khang S.J., Levenspiel O.: New scale-up and design method for stirrer agitated batch mixing vessels.Chem. Eng. Sci.31, 569–577 (1976).CrossRefGoogle Scholar
  61. Knorre W.A., Guthke R., Reiman B., Veith G., Bergter F.: Application of the ZIMET computer coupled scale-up fermentation system in antibiotic production, pp. 213–236 inProc. 3rd Symp. Soc. Countries on Biotechnology, Bratislava 1983.Google Scholar
  62. Kobayashi T., van Dedem G., Moo Young M.: Oxygen transfer into mycelial pellets.Biotechnol. Bioeng.25, 27–32 (1973).CrossRefGoogle Scholar
  63. Koloini T.: Heat and mass transfer in industrial fermentation systems, pp. 28–29 inProc. Interbiotech ’89, Bratislava 1989.Google Scholar
  64. Konstantinov K., Yoshida T.: Physiological state control of fermentation processes.Biotechnol. Bioeng.33, 1145–1156 (1989).CrossRefPubMedGoogle Scholar
  65. Kossen N.W.F., Metz B.: The influence of shear upon the morphology of moulds, p. 78 inProc. 5th Int. Ferment. Symp. (H. Dellweg, Ed.), Inst. Garunsgewerbe und Biotechnologie, Berlin 1976.Google Scholar
  66. Kovanic P.: Gnostical theory of small samples of real data.Probl. Contr. Inform. Theory13, 303–319 (1984).Google Scholar
  67. Lapidus L., Amundson N.R. (Eds):Chemical Reactor Theory. Prentice Hall, Englewood Cliffs, New Jersey 1978.Google Scholar
  68. Lejsek T., Kahler M.: Cylindro-conical tanks in brewery. (In Czech)Kvasný Prům.36,Suppl. 1-48 (1990).Google Scholar
  69. Lilly M.D.: Problems in process scale-up, pp. 79–124 inBioactive Microbial Products 2, (L.J. Nisbet, D.J. Winstanley, Eds). Academic Press, New York 1983.Google Scholar
  70. Lubbe C., Demain A.I., Bergman K.: Use of controlled release polymer toStreptomyces clavuligerus cephalosporin fermentation in shake flasks.Appl. Microbiol. Biotechnol.22, 424–427 (1985).CrossRefGoogle Scholar
  71. Málek I.: Vectorial methodology of physiological state studies in continuous culture, pp. 702–717 inOverproduction of Microbial Products (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds) Academic Press, London 1982.Google Scholar
  72. Málek I., Řičica J., Votruba J.: Continuous cultivation of microorganisms—ecological significance of physiological state studies, pp. 110–126 inContinuous Cultures, Vol. 8 Biotechnology, Medicine and the Environment (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans, Eds.). Ellis Horwood, Chichester 1984.Google Scholar
  73. Málek I., Votruba J., Řičica J.: The continuality principle and the role of continuous cultivation of microorganisms in basic research, pp. 95–104 inContinuous Culture (P. Kyslík, A.E. Dawes, V. Krumphanzl, M. Novák, Eds). Academic Press, New York 1988.Google Scholar
  74. Marculevich N.A., Protodjakonov J.O., Romankov P.G.: Scale-up in modeling of mass transfer processes in non-ideal mixed reactors. (In Russian]Theor. Found. Chem. Technol.18, 3–7 (1984).Google Scholar
  75. Matelová V., Musílková M., Nečásek J., Smejkal F.: Influence of interrupted aeration on chlortetracycline production.Preslia27, 27–34 (1955).Google Scholar
  76. Minkevich I.G.: Ion balance in continuous culture. (In Russian)Biofizika24, 712–716 (1979).PubMedGoogle Scholar
  77. Minkevich I.G., Sobotka M., Vraná D., Havlík I.: Continuous growth ofCandida utilis under periodic change of growth limiting substrate.Folia Microbiol.35, 251–265 (1990).CrossRefGoogle Scholar
  78. Moo Young M., Moreira A.R., Daugulis A.J.: Economics of fermentation processes for SCP production from agricultural wastes.Can. J. Chem. Eng.57, 741–749 (1979).Google Scholar
  79. Moo Young M., Cooney C.L., Humphrey A.E.:Comprehensive Biotechnology, Vol. 2. Pergamon Press, Oxford 1985.Google Scholar
  80. Mou D.G.: Biochemical engineering and beta-lactam antibiotic production, pp. 256–284 inHandbook of Experimental Pharmacology, Vol 67/I (A.L. Demain, N.A. Solomon, Eds). Springer Verlag, Berlin 1983.Google Scholar
  81. Muraoka H., Watanabe Y., Ogasawa R.: Association of coenzyme-independent alcohol and aldehyde dehydrogenases from the membrane fraction ofAcetobacter aceti and their localization.J. Ferment. Technol.60, 171–180 (1982).Google Scholar
  82. Nagatani M.: Studies on the scale-up of a sake fermentor.J. Ferment. Technol.49, 674–679 (1971).Google Scholar
  83. Naveh D.: Scale-up of fermentation for recombinant DNA products.Food Technol.39, 102–108 (1985).Google Scholar
  84. Nigmatulin R.J.:Principles of Mechanics of Heterogeneous Systems (In Russian) Publ. House Nauka, Moscow 1978.Google Scholar
  85. Ogut A., Hatch R.T.: Oxygen transfer into non-Newtonian fluids in mechanically agitated vessels.Can. J. Chem. Eng.66, 79–85 (1988).Google Scholar
  86. Okabe M., Aiba S., Okada M.: The modified complex method as applied to an optimization of aeration and agitation in fermentation.J. Ferment. Technol.51, 594–602 (1973).Google Scholar
  87. Oldshue J.Y.: Shear stress and recombinant fermentations: guidelines for industrial scale-up.Genet. Eng. News3 (6), 46 (1983).Google Scholar
  88. Ollis D.F.: Biological reactor design, pp. 484–531 inChemical Reactor Theory, (L. Lapidus, N.R. Amundson, Eds.). Prentice Hall, Englewood Cliffs, New Jersey 1977.Google Scholar
  89. Onken U., Jostman T., Weiland P.: Effects of hydrostatic pressure on microbial growth for fermentation process modelling.Proc. 3rd Europ. Cong. Biotechnology, pp. 481–495. Verlag Chemie, Weinheim 1984.Google Scholar
  90. Oosterhuis N.M.G., Kossen N.W.F.: Oxygen transfer in a production scale bioreactor.Chem. Eng. Res. Des.61, 308–312 (1983).Google Scholar
  91. Oosterhuis N.M.G., Kossen N.W.F.: Dissolved oxygen profiles in a production scale bioreactor.Biotechnol. Bioeng.26, 546–550 (1984).CrossRefPubMedGoogle Scholar
  92. Oosterhuis N.M.G., Kossen N.W.F., Olivier A.P.C., Schenk E.S.: Scale-down and optimization studies of gluconic acid fermentation byGluconobacter oxydans.Biotechnol. Bioeng.27, 711–720 (1985).CrossRefPubMedGoogle Scholar
  93. Pirt J.S.:Principles of Microbe and Cell Cultivation. Blackwell, Oxford 1975.Google Scholar
  94. Prokop A., Bajpai R.H., Ho C.:Recombinant DNA Technology and Applications, pp. 460–476. McGraw Hill, New York 1991.Google Scholar
  95. Pogorelov A.G.:Parameter Estimation in Non-stationary Chemical Kinetics. (In Russian) Nauka, Moscow 1983.Google Scholar
  96. Polak L.S., Goldberg M.J., Levickij A.A.:Computation Methods in Chemical Kinetics. (In Russian) Nauka, Moscow 1984.Google Scholar
  97. Popovic M., Papalexiou A., Reuss M.: Gas residence time distribution in stirred tank bioreactors.Chem. Eng. Sci.38, 2015–2025 (1983).CrossRefGoogle Scholar
  98. Randolph A.D., Larson M.A.:Theory of Particulate Processes: Analysis and Techniques of Continuous Crystalisation. Academic Press, New York 1971.Google Scholar
  99. Rehm H.J., Reed G.:Biotechnology, Vol. 6. Verlag Chemie, Weinheim 1986.Google Scholar
  100. Reichl U., King R., Gilles E.D.: Characterization of pellet morphology during submerged growth ofStreptomyces tendae by image analysis.Biotechnol. Bioeng.39, 164–170 (1992).CrossRefPubMedGoogle Scholar
  101. Reisman B.:Economic Analysis of Fermentation Processes. CRC Press, Boca Raton (Florida) 1988.Google Scholar
  102. Řičica J., Votruba J.: Physiological aspects in development of mathematical models. pp. 675–686 inOverproduction of Microbial Products (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds). Academic Press, London 1982.Google Scholar
  103. Rittenhaus E., Ulrich J., Weis A., Westphal K.: Large-scale fermentation of cell plant cultures. Planning, design and development of fermentation plant (75000 liter) for production of plant cells.Bio Engineering5 (1), 8–11 (1989).Google Scholar
  104. Ritterhaus E., Ulrich J., Weiss A., Westphal K.: Large-scale fermentation of cell plant cultures. Experiences in cultivation of plant cells in a fermentation cascade up to volume of 75 000 litres.Bio Engineering5 (2), 28–34 (1989)Google Scholar
  105. Ritterhaus E., Brummer B., Gaissler H., Weiss A.: Large scale fermentation of cell plant cultures. Optimal process control of a fermentation unit (75000 litres) for plant cell cultures, based on mathematical modelling.Bio Engineering6 (5), 54–70 (1990).Google Scholar
  106. Ritterhaus E., Brummer B, Gasser H., Munack A., Posten C.: Large scale fermentation of cell plant cultures. Modelling of growth and parameter estimation for plant cell cultures.Bio Engineering6 (1), 30–43 (1990).Google Scholar
  107. Roels J.A., Kossen N.W.F.: On the modelling of microbial metabolism, pp. 98–203 inProgress in Industrial Microbiology, Vol. 14 (M.J. Bull, Ed.) Elsevier, Amsterdam 1978.Google Scholar
  108. Roels J.A.: Mathematical models and design of biochemical reactors.J. Chem. Technol. Biotechnol.32, 59–67 (1982).CrossRefGoogle Scholar
  109. Rosen A.M.:Scale-up in Chemical Technology. (In Russian) Khimiya, Moscow 1980.Google Scholar
  110. Harder A., Roels J.A.: Application of simple structured models in bioengineering.Adv. Biochem. Eng.21, 56–107 (1982).Google Scholar
  111. Schmidt A.: The technological possibilities for measurement of physiological population state features in fermentation practice.Acta Biotechnol.3, 171–176 (1983).CrossRefGoogle Scholar
  112. Schwab H.: Strain improvement in industrial microorganisms by recombinant DNA technique.Adv. Biochem. Eng.37, 130–167 (1988).Google Scholar
  113. Seichter P., Pesl L., Vranek M., Vagner R.: Performance of large scale bioreactors; Paper A8.3 at10th Int. CHISA Congr., Prague 1990.Google Scholar
  114. Sherwood T.K., Pigford R.L., Wilke C.R.:Mass Transfer. McGraw Hill, New York 1975.Google Scholar
  115. Singh V., Fuchs R., Hensler W., Constantindes A.: Scale-up and optimization of oxygen transfer in fermentors. Newtonian and non-Newtonian systems.Adv. N.Y. Acad. Sci.589, 616–641 (1990).CrossRefGoogle Scholar
  116. Slavík J.: Intracellular pH of yeast cells measured with fluorescent probes.FEBS Lett.140, 22–25 (1982).PubMedCrossRefGoogle Scholar
  117. Sobotka M., Prokop A., Dunn I., Einsele A.: A review of method for the measurement of oxygen transfer in microbial systems.Ann. Rep. Ferment. Proc.,5, 127–210 (1982).Google Scholar
  118. Sobotka M., Votruba J., Prokop A.: A two-phase oxygen uptake model of aerobic fermentation.Biotechnol. Bioeng.23, 1193–1202 (1981).CrossRefGoogle Scholar
  119. Sokolov V.N., Domanskij J.V.:Gas—Liquid Reactors. (In Russian) Publ. House Mashinostroeniye, St. Petersburg 1976.Google Scholar
  120. Spier R.E., Griffiths J.B.:Animal Cell Biotechnology. Academic Press, London 1985.Google Scholar
  121. Štěrbáček Z., Tausk P.:Mixing in Chemical Industry SNTL, Prague 1959.Google Scholar
  122. Štěrbáček Z., Votruba J.: Expert system LISAP in evaluation of control of industrial scale bioreactors.Biochem. Eng. J. in press 91992).Google Scholar
  123. Strenk F.:Mixing and Mixers. (In Russian) Khimiya, St. Petersburg 1975.Google Scholar
  124. van Suijdam J., Metz B. Fungal pellet breakup as a function of shear in a fermentor.J. Ferment. Technol.59, 329–333 (1981)Google Scholar
  125. van Suijdam J., Metz B.: Influence of engineering variables upon the morphology of filamentous molds.Biotechnol. Bioeng.23, 111–124 (1981).CrossRefGoogle Scholar
  126. Takamatsu T., Shioya S., Okuda K.: A comparison of unstructured growth models of microorganisms.J. Ferment. Technol.59, 131–136 (1981).Google Scholar
  127. Ujcová E., Fencl Z., Musílková M., Seichert L.: Dependence of release of nucleotides from fungi on fermentor turbine speed.Biotech. Bioeng.22, 237–246 (1980).CrossRefGoogle Scholar
  128. Ulrich G.L.:A Guide to Chemical Engineering Process Design and Economics. J. Wiley, New York. 1984.Google Scholar
  129. Vardar F.: Problems of mass and momentum transfer in large fermentors. Process Biochem.18 (5), 21–23 (1983).Google Scholar
  130. Veksler M.A., Revitch J.V., Shaps J.A.: Experience in scale-up of chemico-pharmaceutical processes. (In Russian)Theor. Osn. Chim. Technol.28, 842–845 (1984).Google Scholar
  131. Volesky B., Votruba J.:Modelling and Optimization of Fermentation Processes. Elsevier, Amsterdam 1992.Google Scholar
  132. Votruba J., Vaněk Z.: Physico-chemical factors affecting actinomycete growth and secondary metabolism, inRegulation of Secondary Metabolism in Actinomycetes, chapter 8 (S. Shapiro, Ed.) CRC Press, Boca Raton 1989.Google Scholar
  133. Vaněk Z., Cudlín J., Blumauerová M., Hošťálek Z., Podojil M., Řeháček Z., Krumphanzl V.:Physiology and Pathophysiology of the Production of Excessive Metabolites. Institute of Microbiology, Prague 1981.Google Scholar
  134. Viesturs U.E., Kristapson M.Z., Levitans E.S.: Foam in microbial processes, pp. 170–223 inMicrobes and Engineering Aspects (A. Fiechter, Ed.). Akademie Verlag, Berlin 1982.Google Scholar
  135. Vraná D., Votruba J., Placek J.: Age-related changes in the physiological state of budding yeast cells.Exp. Cell Res.138, 57–62 (1982).PubMedCrossRefGoogle Scholar
  136. Vraná D., Votruba J., Havlík I., Sobotka M.: Engineering—physiological analysis of transient states in continuous culture ofCandida utilis. (In Czech)Kvasný Prům.31, 188–191 (1985).Google Scholar
  137. Vraná D., Votruba J.: Control of the cell cycle ofCandida utilis by external conditions.Folia Microbiol.26, 382–387 (1981).Google Scholar
  138. Weekman V.: Industrial process model—state of art.Adv. Chem. Ser.148,Chemical Reaction Engineering, pp. 98–131 (H.M. Hulburt, Ed.). AMCS Press, Washington (DC) 1975.Google Scholar
  139. Wittek B., Markl H.: The impact of viscosity and hydrodynamic stress on growth rate of microorganism,Proc. 3rd Europ. Congr. Biotechnology, München, III-513-519, Verlag Chemie, Weinheim 1984.Google Scholar
  140. Weide H., Páca J., Knorre W.A.:Biotechnologie, pp. 238–242. G. Fischer Verlag, Jena 1987.Google Scholar
  141. Yagi H., Yoshida F.: Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessels.Ind. Eng. Chem. Process Des. Devel.14, 488–494 (1975).CrossRefGoogle Scholar
  142. Young B.: Scale-up of genetically engineered products. Preprint of lecture onBIOTECH 84, Washington (DC) 1984.Google Scholar
  143. Yao P-X., Ohtake H., Toda K.: Factors affecting conjugative transfer rates of plasmids in a batch and continuous cultures.J. Ferment. Bioeng.69, 215–219 (1990).CrossRefGoogle Scholar
  144. Yonsel S., Deckwer W.D.: Scale-up of pneumatically operated reactors for oxygen limited fermentation.Bio Engineering6 (3), 12–23 (1990).Google Scholar
  145. Zudin D.V., Kantere V.M., Ugodtchikov G.G.:Automatization of Biotechnological Experiments. (In Russian) Vyssaja skola, Moscow 1987.Google Scholar

Copyright information

© Folia Microbiologica 1992

Authors and Affiliations

  • J. Votruba
    • 1
  • M. Sobotka
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations