Folia Microbiologica

, Volume 43, Issue 1, pp 113–116 | Cite as

Biochemical characteristics and fermentation of glucose and starch by rabbit cæcal strains ofBifidobacterium globosum

  • M. Marounek
  • V. Rada
  • V. Benda


Two strains ofBifidobacterium globosum were isolated from cæcal contents of rabbits in a search for potential probiotics. Both strains fermented glucose, galactose, pentoses, maltose, raffinose and starch. Common coccidiostats (monensin, salinomycin) and antimicrobial growth promotors (avoparcin, bacitracin, nitrovin, virginiamycin) supplied at 10 mg/L inhibited their growth in cultures with glucose. Fermentation parameters of bifidobacteria on glucose and starch. When growing on starch, the two strains of bifidobacteria produced 1 mol lactate per 5.6 and 5.7 mol acetate, respectively. Corresponding values during growth on glucose were 17.3 and 8.4 mol of acetate per mol of lactate. Starch-grown cells accumulated more saccharides than cells grown on glucose (1.48vs. 0.41 and 3.12vs. 1.18 mmol glucose units per 1 g of dry matter, respectively).


Starch Lactic Acid Bacterium Monensin Salinomycin Acetyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe F., Ishibashi N., Shimamura S.: Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets.J. Dairy Sci.78, 2838–2846 (1995).PubMedCrossRefGoogle Scholar
  2. Abe F., Momose H., Igarashi M., Yaeshima T., Ishibashi N., Shimamura S., Kawashima T.: The effect of administration of bifidobacteria on the intestinal flora and growth of newborn piglets.J. Gen. Appl. Microbiol.42, 257–262 (1996).Google Scholar
  3. Anand S.K., Srinivasan R.A., Rao L.K.: Antibacterial activity associated withBifidibacterium bifidum. IICult. Dairy Prod. J.20, 21–23 (1985).Google Scholar
  4. Biavati B., Sgorbati B., Scardovi V.: The genusBifidobacterium, pp. 816–833 in A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (Eds):The Prokaryotes, 2nd ed. Springer-Verlag, New York 1992.Google Scholar
  5. Cheeke P.R.: Rabbit nutrition: a quiet growth area with great potential, pp. 249–260 inAnimal Feeds: Biological Additives. Proc. No. 119, University of Sydney 1989.Google Scholar
  6. Cheeke P.R., Patton N.M.: Carbohydrate-overload of the hindgut: a probable cause of enteritis.J. Appl. Rabbit Res.3, 20 (1980).Google Scholar
  7. Dawes E.A., McGill D.J., Midgley M.: Analysis of fermentation products, pp. 54–215 in J.R. Norris, D.W. Ribbons (Eds):Methods in Microbiology, Vol. 6A. Academic Press, London 1971.Google Scholar
  8. de Vries W., Stouthamer A.H.: Fermentation of glucose, lactose, galactose, mannitol, and xylose in bifidobacteria.J. Bacteriol.96, 472–478 (1968).PubMedGoogle Scholar
  9. Emaldi O., Crociani F., Matienzzi D.: A note on the total viable counts and selective enumeration of anaerobic bacteria in the cæcal contents, soft and hard fæces of rabbit.J. Appl. Bacteriol.46, 169–172 (1979).Google Scholar
  10. Herbert D., Phipps P.J., Strange R.E.: Chemical analysis of microbial cells, pp. 272–277 in J.R. Norris, D.W. Ribbons (Eds):Methods in Microbiology, Vol. 5B. Academic Press, London 1971.Google Scholar
  11. Jenkinson H.F., Buttery P.J., Lewis D.: Assimilation of ammonia byBacteroides amylophilus in chemostat cultures.J. Gen. Microbiol.113, 305–313 (1979).Google Scholar
  12. Kandler O.: Carbohydrate metabolism in lactic acid bacteria.Antonie van Leeuwenhoek49, 209–224 (1983).PubMedCrossRefGoogle Scholar
  13. Kmeť V., Flint H.J., Wallace R.J.: Probiotics and manipulation of rumen, development and function.Arch. Anim. Nutr.44, 1–10 (1993).Google Scholar
  14. Marounek M., Bartoŝ S.: Stoichiometry of glucose and starch splitting by strains of amylolytic bacteria from the rumen and anaerobic digester.J. Appl. Bacteriol.61, 81–86 (1986).PubMedGoogle Scholar
  15. Marounek M., Petr O., Ŝim⫲nek J.: Monensin has no effect on growth and metabolism ofMegasphaera elsdenii.Folia Microbiol.38, 383–386 (1993).Google Scholar
  16. Marounek M., Savka O.G.: Antimicrobial susceptibility of ruminal strains ofButyrivibrio fibrisolvens Acta Vet. Brno63, 129–132 (1994).CrossRefGoogle Scholar
  17. Scardovi V.: GenusBifidobacteriumOrla-Jensen 1924, 472AL, pp. 1418–1434 in N.R. Krieg, J.G. Holt (Eds):Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore 1984.Google Scholar
  18. Scardovi V., Trovatelli L.D.: Fructoso-6-phosphate shunt as peculiar pattern of hexose degradation in the genusBifidobacterium.Ann. Microbiol. Enz.15, 19–29 (1965).Google Scholar
  19. Sleat R., Mah R.A.: Quantitative method for colorimetric determination of formate in fermentation media.Appl. Environ. Microbiol.47, 884–885 (1984).PubMedGoogle Scholar
  20. Stewart C.S.: Lactic acid bacteria in the rumen, pp. 49–68 in B.J.B. Wood (Ed.):The Lactic Acid Bacteria, Vol. 1. Elsevier Applied Science, London-New York 1992.Google Scholar
  21. Walker G.J.: A transglucosylase ofStreptococcus bovis.Biochem. J.94, 299 (1965).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 1998

Authors and Affiliations

  • M. Marounek
    • 1
  • V. Rada
    • 2
  • V. Benda
    • 3
  1. 1.Institute of Animal Physiology and GeneticsCzech Academy of SciencesPrague 10Czech Republic
  2. 2.Department of Microbiology and BiotechnologyCzech Agricultural UniversityPrague 6Czech Republic
  3. 3.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations