Folia Microbiologica

, Volume 43, Issue 1, pp 63–67 | Cite as

Effects of temperature and novobiocin on the expression of calf prochymosin gene and on plasmid copy number in recombinantEscherichia coli

  • F. Kaprálek
  • P. J. Tichý
  • M. Fábry
  • J. Sedláček


Escherichia coli strain HB101 harboring an expression plasmid bearing calf prochymosin gene under the control of thetac promoter was grown in the presence of IPTG with or without novobiocin at 28 and 40 °C, respectively. The differential rates of synthesis of prochymosin inclusion, and, for comparison, of β-lactamase and β-galactosidase, as well as plasmid copy number, were determined during the first hours of steady state growth. At 28 °C the induced expression of prochymosin gene was almost blocked. Addition of novobiocin did not alleviate this effect. In fact, it strengthtened it, and we conclude that both these additive inhibitory effects are a consequence of the decrease in negative superhelical tension of plasmid DNA to an insufficient level. At 40 °C the differential rate of prochymosin synthesis was markedly enhanced. Since the copy number of the expression plasmid increased approximately to the same extent, we conclude that an increase in gene dose is the cause. The stimulation of cloned heterologous gene expression at 40 °C and inhibition at 28 °C may be conveniently used in biotechnological-scale cultivations of some recombinant bacteria.


Differential Rate Novobiocin Plasmid Copy Number Plasmid Replication Heterologous Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battistoni A., Carri M.T., Mazzetti A.P., Potilio G.: Temperature-dependent protein foldingin vivo—lower growth temperature increases yield of two genetic variants ofXenopus laevis Cu,Zn-superoxide dismutase inEscherichia coli.Biochem. Biophys. Res. Comm. 186, 1339–1344 (1992).PubMedCrossRefGoogle Scholar
  2. Bertrand-Burggraf E., Oertel P., Schnarr M., Daune M., Granger-Schnarr M.: Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number.Plasmid 22, 163–168 (1989).PubMedCrossRefGoogle Scholar
  3. Čejka K., Holubová I., Hubáček J.: Curing effect of chlorobiocin onEscherichia coli plasmids.Mol. Gen. Genet. 186, 153–155 (1982).PubMedCrossRefGoogle Scholar
  4. Chalmers J.J., Kim E., Telford J.N., Wong E.Y., Tacon W.C., Shuler M.L., Wilson D.B.: Effects of temperature onEscherichia coli overproducing β-lactamase or human epidermal growth factor.Appl. Environ. Microbiol. 56, 104–111 (1990).PubMedGoogle Scholar
  5. Crosa J.H., Falkow S.: Plamids, pp. 267–282 in P. Gerhardt (Ed.):Manual of Methods of General Bacteriology. American Society for Microbiology, Washington (DC) 1981.Google Scholar
  6. Dobrogosz W.J.: Enzymatic activity, p. 365–392 in P. Gerhardt (Ed.):Manual of Methods for General Bacteriology. American Society for Microbiology, Washington (DC) 1981.Google Scholar
  7. Drlica K.: Biology of bacterial deoxyribonucleic acid topoisomerases.Microbiol. Rev. 48, 273–289 (1984).PubMedGoogle Scholar
  8. Drlica K.: Bacterial topisomerases and the control of DNA supercoiling.Trends Genet. 6, 432–437 (1990).CrossRefGoogle Scholar
  9. Engberg B., Nordström K.: Replication of R-factor R1 inEscherichia coli K-12 at different growth rates.J. Bacteriol. 123, 179–186 (1975).PubMedGoogle Scholar
  10. Gellert M.: DNA topisomerases.Ann. Rev. Biochem. 50, 879–910 (1981).PubMedCrossRefGoogle Scholar
  11. Goldstein E., Drlica K.: Regulation of bacterial DNA supercoiling: Plasmid linking numbers vary with growth temperature.Proc. Nat. Acad. Sci. USA 81, 4046–4050 (1984).PubMedCrossRefGoogle Scholar
  12. Hooper D.C., Wolfson J.S., McHugh G.L., Swartz M.D., Tung C., Swartz M.M.: Elimination of plasmid pMG110 fromEscherichia coli by novobiocin and other inhibitors of DNA gyrase.Antimicrob. Agents Chemother. 25, 586–590 (1984).PubMedGoogle Scholar
  13. Jones P.G., Krah R., Tafuri S.R., Wolffe A.P.: DNA gyrase, C57.4, and the cold shock response inEscherichia coli.J. Bacteriol. 174, 5798–5802 (1992).PubMedGoogle Scholar
  14. Kaprálek F., Ječmen P., Sedláček J., Fábry M., Zadražil S.: Fermentation conditions for high-level expression of thetac-promoter-controlled calf prochymosin cDNA inEscherichia coli HB101.Biotech. Bioeng. 37, 71–79 (1991).CrossRefGoogle Scholar
  15. McHugh G.L., Swartz M.N.: Elimination of plasmids from several bacterial species by novobiocin.Antimicrob. Agents Chemother. 12, 423–426 (1997).Google Scholar
  16. Mizukami T., Komatsu Y., Hosoi N., Itoh S., Oka T.: Production of active human interferon-β inE. coli. I. Preferential production by lover culture temperature.Biotechnol. Lett. 8, 605–610 (1986).CrossRefGoogle Scholar
  17. Piatak M., Lane J.A., Laird W., Bjorn M.J., Wang A., Williams M.: Expression of soluble and fully functional ricin A chain inEscherichia coli is temperature-sensitive.J. Biol. Chem. 263, 4837–4843 (1988).PubMedGoogle Scholar
  18. Schein C.H., Noteborn M.H.M.: Formation of soluble recombinant proteins inEscherichia coli is favored by lower growth temperature.Bio/Technology 6, 291–29413 (1988).CrossRefGoogle Scholar
  19. Seo J.-H., Bailey J.E.: Effects of recombinant plasmid content on growth properties and cloned gene product formation inEscherichia coli.Biotech. Bioeng. 27, 1668–1674 (1985).CrossRefGoogle Scholar
  20. Son K.H., Jang J.H., Kim J.H.: Effect of temperature on plasmid stability and expression of cloned cellulase gene in a recombinantBacillus megaterium.Biotechnol. Lett. 9, 821–824 (1987).CrossRefGoogle Scholar
  21. Spangler R., Zhang S., Krueger J., Zubay G.: Colicin synthesis and cell death.J. Bacteriol. 163, 167–173 (1985).PubMedGoogle Scholar
  22. Sykes R.B., Nordström K.: Microiodometric determination of β-lactamase activity.Antimicrob. Agents Chemother. 1, 94–99 (1972).PubMedGoogle Scholar
  23. Taylor D.E., Brose E.C.: Modified Birnboim-Doly method for rapid detection of plasmid copy number.Nucl. Acids Res. 16, 9056 (1988).PubMedCrossRefGoogle Scholar
  24. Uhlin B.E., Nordström K.: R plasmid gene dosage effects inEscherichia coli K-12: copy mutants of the R plasmid R1drd-19.Plasmid 1, 1–7 (1977).PubMedCrossRefGoogle Scholar
  25. Uhlin B.E., Nordström K.: Preferential inhibition of plasmid replicationin vivo by altered DNA gyrase activity inEscherichia coli.J. Bacteriol. 162, 855–857 (1985).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 1998

Authors and Affiliations

  • F. Kaprálek
    • 1
  • P. J. Tichý
    • 1
  • M. Fábry
    • 1
  • J. Sedláček
    • 1
  1. 1.Institute of Molecular GeneticsAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations