Advertisement

Folia Microbiologica

, Volume 43, Issue 1, pp 23–26 | Cite as

Degradation of fenitrothion byBacillus stearothermophilus adhering to silica

  • B. Kumari
  • A. Guha
  • T. C. Bora
  • M. K. Roy
Papers
  • 26 Downloads

Abstract

B. stearothermophilus strain AG-49, when cultivated in mineral medium in the presence of silica (SA), adhered to SA. Adhesion depended on age of culture, contact time and glucose concentration of the culture medium. Mid-exponential phase culture (5 h) required minimum contact time (30 min) for maximum adhesion. 0.6% glucose concentration was optimum. Quantitative variation in protein and saccharide extractable in sodium chloride and sodium dodecyl sulfate (SDS) was observed. Five % degradation of fenitrothion by adherentB. stearothermophilus could be achieved in 4 d.

Keywords

Sodium Dodecyl Sulfate Malathion Fenitrothion Bacillus Stearothermophilus Drinking Water Supply System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addy M., Slayne M.A., Wadge W.G.: The formation and control of dental plaque—an overview.J. Appl. Bacteriol.73, 269–278 (1992).PubMedGoogle Scholar
  2. Block J.C.: Biofilm in drinking water systems, pp. 15–41 inBiofilm—Science and Technology (L.F. Melo, T.R. Bort, M. Fletcher, B. Capdeville, Eds). Kluwer-Academic Press, Dordrecht 1992.Google Scholar
  3. Casterton J.W., Geesey G.G., Cheng K.J.: How bacteria sticks.Sci. Am.238, 86–95 (1978).Google Scholar
  4. Characklis W.G.: Fouling biofilm development—a process analysis.Biotechnol. Bio Eng.14, 1923–1960 (1981).CrossRefGoogle Scholar
  5. Fletcher M.: The effect of culture concentration and age, time and temperature on bacterial attachment to polystyrene.Can. J. Microbiol.23, 1–6 (1977).CrossRefGoogle Scholar
  6. Fletcher M., McEldowney S.: Microbial attachment of nonbiological surface, pp. 124–129 inCurrent Perspectives in Microbial Ecology (M.J. Klug, C.A. Reddy, Eds). American Society of Microbiology, Washington (DC) 1984.Google Scholar
  7. Geesey G.G.: Microbial exopolymer—ecological and economical considerations.ASM News48, 9–14 (1982).Google Scholar
  8. Hartley D., Kidd H. (Eds):Agrochemicals Handbook, pp. 149–150. Royal Society of London, Nottingham (England) 1983.Google Scholar
  9. Holah J.T., Kearney L.R.: Introduction to biofilm in food industry, pp. 5–14 inBiofilm—Science and Technology (L.F. Melo, T.R. Bort, M. Fletcher, B. Capdeville, Eds). Kluwer-Academic Press, Dordrecht 1992.Google Scholar
  10. Lauwers A.M., Heinen W., Goris M., Leon G., Chrisvander D.: Early stages in biofilm development in methanogenic fluidized bed reactors.Appl. Microbiol. Biotechnol.33, 352–358 (1990).PubMedCrossRefGoogle Scholar
  11. Pringle J.H., Fletcher M.: Influence of substrate wettability on attachment of fresh water bacteria to solid surface.Appl. Environ. Microbiol.45, 811–817 (1983).PubMedGoogle Scholar
  12. Recault Y.: Treatment of distillary waste water using anaerobic down flow stationary fixed film reactor: performance of a large plant in operation fo four years.Water Sci. Tech.22, 361–372 (1990).Google Scholar
  13. Roy M.K., Guha A., Kumari B., Bora T.C., Ghosh A.C.: Pesticide degradation characteristics, plasmid profile and degradative efficiency of facultative anaerobes.Internat. Symp. Trends in Microbiology, Calcutta (India) (1995).Google Scholar
  14. Rusten B., Qdegaard H., Lundar A.: Treatment of dairy waste water in a novel moving bed biofilm reactor.Water Sci. Tech.26, 703–711 (1992).Google Scholar

Copyright information

© Folia Microbiologica 1998

Authors and Affiliations

  • B. Kumari
    • 1
  • A. Guha
    • 1
  • T. C. Bora
    • 1
  • M. K. Roy
    • 1
  1. 1.Biochemistry DivisionRegional Research LaboratoryJorhatAssamIndia

Personalised recommendations