Folia Microbiologica

, Volume 40, Issue 2, pp 181–184 | Cite as

Location of the α-amylase gene in rumenStreptococcus bovis strains distinguished by unstable amylase activity

  • M. Mareková
  • Z. Jonecová
  • V. Kmeî


Genetic stability of amylase activity after serial subcultivation experiments with amylolytic ruminalStreptococcus bovis strains was investigated. Two strains Amy+ and Amy were obtained. Loss of amylase activity connected with the loss of plasmid DNA was not found in these strains. The presence of the gene responible for the amylase activity in the chromosome of these strains was revealed by hybridization of the α-amylase gene on pJK108 against chromosomal DNA ofS. bovis andBacillus subtilis after a complete restriction withEcoRI.


Lactobacillus Amylase Boris Amylase Activity Catabolite Repression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clark R.G., Hu Y.-J., Salmon R.K., Cheng K.-J.: Cloning and expression of an amylase gene fromStreptococcus bovis inEscherichia coli.Archiv Microbiol.157, 201–204 (1992).CrossRefGoogle Scholar
  2. Cotta M.A., Whitehead T.R.: Regulation and cloning of the gene encoding amylase activity of the ruminal bacteriumStreptococcus bovis.Appl. Environ. Microbiol.59, 189–191 (1993).PubMedGoogle Scholar
  3. Dretzen G., Bellard M., Sassone-Corsi P., Chambon I.: A reliable method for the recovery of DNA fragments from agarose and acrylamide gels.Analyt. Biochem.112, 295–299 (1981).PubMedCrossRefGoogle Scholar
  4. Gilbert H.J., Hall J.: Molecular cloning ofStreptococcus bovis lactose catabolic genes.J. Gen. Microbiol.133, 2285–2293 (1987).Google Scholar
  5. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H.: Catabolite repression of α-amylase gene expression inBacillus subtilis involves a trans-acting gene product homologous to theEscherichia coli lacI andgalR repressors.Mol. Microbiol.5, 575–584 (1991).PubMedCrossRefGoogle Scholar
  6. Hungate R.E.:The Rumen and Its Microbes. Academic Press, New York 1966.Google Scholar
  7. Javorský P., Kuncová M., Loseva E.F., Chasanov F.K.: Cloning of the α-amylase gene fromStreptococcus bovis and its expression inBacillus subtilis cells.Mol. Genet. Microbiol. Virusol. (Moscow)6, 19–21 (1991).Google Scholar
  8. Klaenhammer T.R.: Method for plasmid isolation in lactobacilli.Current Microbiol.10, 23–28 (1984).CrossRefGoogle Scholar
  9. Kmeť V., Javorský P., Nemcová R., Kopečný J., Boďa K.: Occurrence of conjugative amylolytic activity in rumen lactobacilli.Zbl. Mikrobiol.144, 53–57 (1989).Google Scholar
  10. Knight R.G., Shlaes D.M.: Physiological characteristics and deoxyribonucleic acid relatedness of human isolates ofStreptococcus bovis andStreptococcus bovis (var.).Internat. J. System. Bacteriol.35, 357–311 (1985).Google Scholar
  11. Maniatis T., Fritsch E.F., Sambrook J.:Molecular Cloning-laboratory Manual. Cold Spring Harbor Laboratory, New York 1982.Google Scholar
  12. Medrek T.F., Barnes E.M.: The physiological and serological properties ofStreptococcus bovis and related organisms isolated from cattle and sheep.J. Appl. Microbiol.25, 169–179 (1962).Google Scholar
  13. Ohmiya K., Hoshino Ch., Shimizu S.: Cellulose-dependent and penicillin-resistant plasmid fromRuminococcus albus.Asian J. Anim. Sci.2, 501–502 (1989).Google Scholar
  14. Priest F.G.: Extracellular enzyme synthesis in the genusBacillus.Bact. Rev.41 711–753 (1977).PubMedGoogle Scholar
  15. Russell J.B., Robinson P.H.: Compositions and characteristics of strains ofStreptococcus bovis.J. Dairy Sci.67, 1525–1531 (1984).PubMedCrossRefGoogle Scholar
  16. Satoh E., Niimura Y., Uchimura T., Kozaki M., Komagata K.: Molecular cloning and expression of two alpha-amylase genes fromStreptococcus bovis 148 inEscherichia coli.Appl. Environ. Microbiol.59, 3669–3673 (1993).PubMedGoogle Scholar
  17. Stackebrandt E., Kandler O.: Taxonomy of genusCellulomonas, based on phenotypic characters homology, and proposal of seven neotype strains.Internat. J. System. Bacteriol.29, 273–282 (1979).Google Scholar
  18. Tichý P., Pazlarová J., Hartmann M., Fencl Z., Erbanová L., Benada O., Krumphanzl V.: Isolation of the pM110 plasmid from the α-amylase producing strain ofBacillus subtilis.Mol. Gen. Genet.181, 248–253 (1981).CrossRefGoogle Scholar
  19. Weickert M.J., Chamblis G.H.: Genetic analysis of the promotor region of theBacillus subtilis α-amylase gene.J. Bacteriol.171, 3656–3666 (1989).PubMedGoogle Scholar
  20. Weickert M.J., Chamblis G.H.: Site-directed mutagenesis of a catabolite repression operator sequence inBacillus subtilis.Proc. Natl. Acad. Sci. USA87, 6238–6242 (1990).PubMedCrossRefGoogle Scholar
  21. Whitehead T.R., Cotta M.A.: Development of a DNA probe forStreptococcus bovis by using a cloned amylase gene.J. Clin. Microbiol.31, 2387–2391 (1993).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1995

Authors and Affiliations

  • M. Mareková
    • 1
  • Z. Jonecová
    • 2
  • V. Kmeî
    • 1
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Experimental Veterinary MedicineKošiceSlovakia

Personalised recommendations