Skip to main content
Log in

Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury

  • Published:
Molecular and Chemical Neuropathology

Abstract

Reverse transcription-polymerase chain reaction (RT-PCR) was used to estimate dynamic changes in levels of c-fos protooncogene, tumor necrosis factor alpha (TNF-α), and preprodynorphin messenger ribonucleic acid (mRNA) isolated from individual segments (T1 to T12) of rat spinal cord following graded impact trauma (50 or 100 g/cm) to the T9 segment of pentobarbital-anesthetized rats. Trauma caused elevation of c-fos mRNA at the trauma site by 30 min after injury that was related to injury severity. At this time, increased levels of TNF-α (but not of preprodynorphin) mRNA were also found. By 24 h, c-fos and TNF-α mRNA had returned to normal levels at trauma site, but were now increased at more distal segments (T5 and T12). At 4 h after trauma, induction of preprodynorphin mRNA was detected at the trauma site; levels continued to be elevated at 24 h when they were also detected at T5 and T12. Increases for each mRNA were greater for severe as compared to moderate trauma. The injury dose- and time-dependent changes in c-fos, TNF-α, and preprodynorphin gene expression suggest that their respective proteins are synthesized in response to trauma, and may play a part in the secondary injury response. Later accumulation of message distant from the trauma site may reflect a progression of delayed damage along the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bakshi R., Ni R. X., and Faden A. I. (1992)N-methyl-d-aspartate (NMDA) and opioid receptors mediate dynorphin-induced spinal cord injury, behavioral and histological studies.Brain Res. 580, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Bakshi R., Newman A. H., and Faden A. I. (1990) Dynorphin A-(1–17) induces alterations in free fatty acids, excitatory amino acids, and motor function through an opiate receptor-mediated mechanism.J. Neurosci. 10, 3793–3800.

    PubMed  CAS  Google Scholar 

  • Benveniste E. N. (1992) Inflammatory cytokines within the central nervous system, sources, function, and mechanism of action.Am. J. Physiol. 263, C1-C16.

    PubMed  CAS  Google Scholar 

  • Blumenfeld K. S., Welsh F. A., Harris V. A., and Pesenson M. A. (1992) Regional expression of c-fos and heat shock protein-70 mRNA following hypoxiaischemia in immature rat brain.J. Cereb. Blood Flow Metab. 12, 987–995.

    PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M., Goulding M., Faull R. L. M., Ralph R., Mee E., and Frith R. (1990) Induction of c-fos mRNA and protein in neurons and glia after traumatic brain injury, Pharmacological characterization.Exp. Neurol. 107, 236–248.

    Article  PubMed  CAS  Google Scholar 

  • Dubner R. and Ruda M. A. (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation.Trends Neurosci. 15, 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I. (1990) Opioid and nonopioid mechanisms may contribute to dynorphin's pathophysiological actions in spinal cord injury.Ann. Neurol. 27, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I. (1993) Experimental neurobiology of central nervous system injury, inCritical Reviews in Neurobiology (Nemeroff C. B., ed.), CRC, Boca Raton, FL, pp. 175–186.

    Google Scholar 

  • Faden A. I., Chan P. H., and Longar S. (1987a) Alterations in lipid metabolism, Na+, K+-ATPase activity, and tissue water content of spinal cord following experimental traumatic injury.J. Neurochem. 48, 1809–1816.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Takemori A. E., and Portoghese P. S. (1987b) η-Selective opiate antagonist nor-binaltorphimine improves outcome after traumatic spinal cord injury in rats.CNS Trauma 4, 227–237.

    CAS  Google Scholar 

  • Faden A. I., Sacksen I., and Noble L. J. (1988) Structure-activity relationships of TRH analogs in rat spinal cord injury.Brain Res. 448, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Molineaux C. J., Rosenberger J. G., Jacobs T. P., and Cox B. M. (1985) Endogenous opioid immunoreactivity in rat spinal cord following traumatic injury.Ann. Neurol. 17, 386–390.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D. (1994) The consequences of inflammation after injury, inThe Neurobiology of CNS Trauma (Salzman, S. and Faden, A. I. eds.), Oxford University Press, New York, pp. 155–164.

    Google Scholar 

  • Giulian D. and Lachman L. B. (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury.Science 228, 497–499.

    Article  PubMed  CAS  Google Scholar 

  • Hall E. D. and Braughler J. M. (1986) Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review.CNS Trauma 3, 281–294.

    CAS  Google Scholar 

  • Herman B. H. and Goldstein A. (1985) Antinociception and paralysis induced by intrathecal dynorphin A.J. Pharmacol. Exp. Ther. 232, 27–35.

    PubMed  CAS  Google Scholar 

  • Hsu C. Y., Lin T.-N. Xu J., Chao J., and Hogan E. (1994) Kinins and related inflammatory mediators in CNS injury, inThe Neurobiology of CNS Trauma (Salzman S. and Faden A. I., eds.), Oxford University Press, New York, pp. 145–154.

    Google Scholar 

  • Hsu C. Y., Halushka P. V., Hogan E. L., Banik N. L., Lee W. A., and Perot L. P. (1985) Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury.Neurology 35, 1003–1009.

    PubMed  CAS  Google Scholar 

  • Hylder J. L., Noguchi K., and Ruda M. A. (1992) Neonatal capsaicin treatment attenuates spinal Fos activation and dynorphin gene expression following peripheral tissue inflammation and hyperalgesia.Neuroscience 12, 1716–1725.

    Google Scholar 

  • Lemke M. and Faden A. I. (1990) Edema development and ion changes in rat spinal cord after impact trauma: injury dose response studies.J. Neurotrauma 7, 41–54.

    PubMed  CAS  Google Scholar 

  • McIntosh T. K., Hayes R. L., DeWitt D. S., Agura V., and Faden A. I. (1987) Endogenous opioids may mediate secondary damage after experimental brain injury.Am. J. Physiol. 253, E565–574.

    PubMed  CAS  Google Scholar 

  • Noble L. J. and Wrathall J. R. (1989a) Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat.Exp. Neurol. 103, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Noble L. J. and Wrathall J. R. (1989b) Distribution and time course of protein extravasation in the rat spinal cord after contusive injury.Brain Res. 482, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Panter S. S. and Faden A. I. (1992) Biochemical changes and secondary injury from stroke and trauma, inPrinciples and Practice of Restorative Neurology (Young R. R. and Delwade P. J., eds). Butterworths, New York, Chapter 4, pp. 32–52.

    Google Scholar 

  • Panter, S. S., Yum S., and Faden A. I. (1990) Alterations in extracellular amino acids after traumatic spinal cord injury.Ann. Neurol. 27, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Phillips L. L. and Belardo E. T. (1990) Expression of c-fos in the hippocampus following mild and moderate fluid percussion brain injury.J. Neurotrauma 9, 323–333.

    Google Scholar 

  • Przewlocki R., Shearman G. T., and Herz A. (1983) Mixed opioid/nonopioid effects of dynorphin and dynorphin related peptides after their intrathecal injection in rats.Neuropeptides 3, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Rawe S. E., Lee W. A., and Perot P. L. (1981) Spinal cord glucose utilization after experimental spinal cord injury.Neurosurgery 9, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Sandler A. N. and Tator C. H. (1967) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord.J. Neurosurg. 5, 638–646.

    Google Scholar 

  • Saunders R. D., Dugan L. L., Demediuk P., Means E. D., Horrocks L. A., and Anderson D. K. (1987) Effects of methylprednisolone and the combination of α-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue.J. Neurochem. 49, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Sharma H. S., Nyberg F., and Olsson Y. (1992) Dynorphin A content in the rat brain and spinal cord after a localized trauma to the spinal cord and its modification with p-chlorophenylalanine. An experimental study using radioimmunoassay technique.Neurosci. Res. 14, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Stewart P. and Isaac L. (1989) Localization of dynorphin-induced toxicity in rat spinal cord.Life Sci. 44, 1505–1514.

    Article  PubMed  CAS  Google Scholar 

  • Vink R., Portoghese P. S., and Faden A. I. (1991) Kappa-opioid antagonist improves cellular bioenergetics and recovery after traumatic brain injury.Am. J. Physiol. 261, R1527–1532.

    PubMed  CAS  Google Scholar 

  • Vink R., Noble L. J., Knoblach S. M., Bendall M. R., and Faden A. I. (1989) Metabolic changes in rabbit spinal cord after trauma: magnetic resonance spectroscopy studies.Ann. Neurol. 25, 26–31.

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C., Golanov E., Yamamoto S., Yee F., Ericson H., Yoo H., Inturrisi C. E., and Reis D. J. (1993) Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions.Nature 363, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Young W. and Flamm E. S. (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials and extracellular calcium in experimental spinal injury.J. Neurosurg. 57, 667–673.

    Article  PubMed  CAS  Google Scholar 

  • Zivin J. A., Doppman J. L., and Reid J. L. (1976) Biochemical and histochemical studies of biogenic amines in spinal cord trauma.Neurology 26, 99–107.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, A.G., Faden, A.I. Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Molecular and Chemical Neuropathology 23, 179–190 (1994). https://doi.org/10.1007/BF02815410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815410

Index Entries

Navigation