Advertisement

Folia Geobotanica

, Volume 31, Issue 3, pp 405–414 | Cite as

Genetic variability in obligate apomicts of the genusTaraxacum

  • A. John Richards
Apomixis and Taxonomy Proceedings of the Symposium held in Pruhonice, Czech Republic 1995; edited by A.J. Richards, J. Kirschner, J. Stepanek & K. Marhold

Abstract

To test whether obligate apomicts can generate genetic variability, the only valid procedure is to investigate heritable variation amongst the offspring of fully agamospermous mothers. Among plants, most reports have been forTaraxacum, and this review concentrates on this genus, although there are many analogous reports for animals. InTaraxacum, within-family variation is commonly found at the levels of ploidy, aneuploidy, recombination and single gene mutation. Faulty disjunction, somatic recombination due to transposon activity, and mutation are all implicated. Although such asexual variation should generate evolutionary change, and there is clear evidence that this has occurred, evolutionary patterns will differ fundamentally from those of outcrossing sexuals. As asexual matrilineal lines cannot shed or disseminate mutational loads, three dimensional relationships are dichotomously dendroid rather than reticulate.

Keywords

Agamospermy Apomixis Evolution Taraxacum Variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asker S. (1979): Progress in apomixis research.Hereditas 91: 231–240.Google Scholar
  2. Asker S. (1980): Gametophytic apomixis: elements and genetic regulation.Hereditas 93: 277–293.Google Scholar
  3. Battjes J., Menken S.B.J. &den Nijs H.C.M. (1992): Clonal diversity in some microspecies ofTaraxacum sect.Palustria (Lindb. fil.)Dahlst. from Czechoslovakia.Bot. Jahrb. Syst. 114: 315–328.Google Scholar
  4. Bell G. (1982):The masterpiece of nature. The evolution and genetics of sexuality. Croom Helm, London.Google Scholar
  5. Calos M.P. &Miller J.H. (1980): Transposable elements.Cell 20: 579–595.PubMedCrossRefGoogle Scholar
  6. Crease T.J. &Lynch M. (1991): Ribosomal DNA variation inDaphnia pulex.Molec. Biol. Evol. 8: 620–640.Google Scholar
  7. Darlington C.D. (1939):The evolution of genetic systems. Oliver & Boyd, Edinburgh.Google Scholar
  8. Dickinson T.A. &Phipps J.B. (1986): Studies inCrataegus (Rosaceae: Maloideae) XIV. The breeding system ofCrataegus crus-galli sensu lato in Ontario.Amer. J. Bot. 73: 16–130.CrossRefGoogle Scholar
  9. Fincham J.R.S. &Sastry G.R.K. (1974): Controlling elements in maize.Annual Rev. Genet. 8: 15–50.CrossRefGoogle Scholar
  10. Finnegan D.J. (1981): Transposable elements and proviruses.Nature 292: 800–801.PubMedCrossRefGoogle Scholar
  11. Ford H. &Richards A.J. (1985): Isozyme variation within and betweenTaraxacum agamospecies in a single locality.Heredity 55: 289–291.Google Scholar
  12. Gadella T.W.J. (1991): Variation, hybridization and reproductive biology ofHieracium pilosella-L.Proc. Kon. Ned. Akad. Wetensch., C. 94: 455–488.Google Scholar
  13. Gustafsson Å. (1935): Primary and secondary association inTaraxacum.Hereditas 20: 1–31.CrossRefGoogle Scholar
  14. Gustafsson Å. (1946–1947): Apomixis in higher plants.Acta Univ. Lund. N.S., Sect. 2. 42(3): 1–67; 43(2): 69–179, (12): 183–370.Google Scholar
  15. Hoy-Liu S. (1963): The chromosome numbers of someTaraxacum species.Acta Bot. Neerl. 12: 76–83.Google Scholar
  16. Hughes J. (1987):Variability in sexual and apomictic Taraxacum. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne.Google Scholar
  17. Hughes J. &Richards A.J. (1988): The genetic structure of populations of sexual and asexualTaraxacum.Heredity 60: 161–171.Google Scholar
  18. Janzen D.J. (1977): What are dandelions and aphids?Amer. Naturalist 111: 586–589.CrossRefGoogle Scholar
  19. Jenniskens M.-J. P.J., Den Nijs H.C.M. &Huizing E.A. (1984): Karyogeography ofTaraxacum sectionTaraxacum and the possible occurrence of facultative agamospermy in Bavaria and north-west Austria.Phyton (Horn) 24: 11–34.Google Scholar
  20. King L.M. (1993): Origins of genotypic variability in North American dandelions inferred from ribosomal DNA and chloroplast DNA restriction enzyme analysis.Evolution 47: 136–151.CrossRefGoogle Scholar
  21. King L.M. &Schaal B.A. (1990): Genotype variation within asexual lineages ofTaraxacum officinale.Proc. Natl. Acad. U.S.A. 87: 998–1002.CrossRefGoogle Scholar
  22. Kirschner J. &Štěpánek J. (1994): Clonality as part of the evolution process inTaraxacum.Folia Geobot. Phytotax. 29: 265–275.CrossRefGoogle Scholar
  23. Lokki J., Saura A., Kankinen P. &Suomalainen E. (1976a): Genetic polymorphism and evolution in parthenogenetic animals. V.Genet. Res. 28: 27–36.PubMedCrossRefGoogle Scholar
  24. Lokki J., Saura A., Lankinen P. &Suomalainen E. (1976b): Genetic polymorphism and evolut parthenogenetic animals. VI.Hereditas 82: 209–216.PubMedCrossRefGoogle Scholar
  25. Lyman J.C. &Ellstrand N.C. (1984): Clonal diversity inTaraxacum officinale (Compositae), an apomict.Heredity 53: 1–10.Google Scholar
  26. Małecka J. (1967): Cyto-embryological studies inTaraxacum scanicum Dt.Acta Biol. Cracov., Ser. Bot. 10: 195–206.Google Scholar
  27. Małecka J. (1969): Further cyto-taxonomic studies in the genusTaraxacum sectionErythrosperma Dt. 1.Acta Biol. Cracov., Ser. Bot. 12: 57–70.Google Scholar
  28. Manning J.T. &Dickson D.P.E. (1986): Asexual reproduction, polyploidy and optimal mutation rates.J. Theor. Biol. 118: 485–489.CrossRefGoogle Scholar
  29. Maynard Smith J. (1978):The evolution of sex. Cambridge University Press, Cambridge.Google Scholar
  30. Mayr E. (1970):Populations, species and evolution. Belknap, Cambridge MA.Google Scholar
  31. Mogie M. (1982):The status of Taraxacumagamospecies. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne.Google Scholar
  32. Mogie M. (1985): Morphological, developmental and electrophoretic variation within and between obligately apomicticTaraxacum agamospecies.Biol. J. Linn. Soc. 24: 207–216.CrossRefGoogle Scholar
  33. Mogie M. (1986): On the relationship between asexual reproduction and polyploidy.J. Theoret. Biol. 122: 493–498.CrossRefGoogle Scholar
  34. Mogie M. (1992):The evolution of asexual reproduction in plants. Chapman Hall, London.Google Scholar
  35. Mogie M. &Ford H. (1988): Sexual and asexualTaraxacum species.Biol. J. Linn. Soc. 35: 155–168.CrossRefGoogle Scholar
  36. Mogie M. &Richards A.J. (1983): Satellited chromosomes, systematics and phylogeny inTaraxacum (Asteraceae).Pl. Syst. Evol. 141: 219–229.CrossRefGoogle Scholar
  37. Muldal S. (1952): The chromosomes of the earthworms. I. The evolution of polyploidy.Heredity 6: 55–76.Google Scholar
  38. Muller H.J. (1932): Some genetic aspects of sex.Amer. Naturalist 66: 118–138.CrossRefGoogle Scholar
  39. Muller H.J. (1964): The relation of recombination to mutational advance.Mut. Res. 1: 2–9.Google Scholar
  40. Muller U. (1972): Zytologisch-embryologische Beobachtungen anTaraxacum-Arten aus der SektionVulgariaDahlst. in der Schweiz.Ber. Geobot. Inst. ETH Stiftung Rübel 41: 48–55.Google Scholar
  41. Navashin M. (1926): Variabilität des Zellkerns beiCrepis-Arten in Bezug auf die Artbildung.Z. Zellf. Mikroskop. Anat. 4: 171–215.CrossRefGoogle Scholar
  42. den Nijs H.C.M., Sterk A.A. &van der Hammen H. (1978): Cytological and ecological notes on theTaraxacum sectionsErythrosperma andObliqua of the coastal area of the Netherlands.Acta Bot. Neerl. 27: 287–305.Google Scholar
  43. den Nijs H.C.M., Menken B.J. & Vlot L. (1987): Gene flow in di-triploid mixed stands ofTaraxacum (Asteraceae) in the Odenwald (BRD) as measured by isozyme analysis. Abstract 5-46-9. In:XIV International Botanical Congress Abstracts, Berlin, p. 307.Google Scholar
  44. Nogler G. (1994): Genetics of gametophytic apomixis—a historical sketch.Polish Bot. Stud. 8: 5–11.Google Scholar
  45. Nybom H. (1988): Apomixis versus sexuality in blackberries (Rubus subgen.Rubus, Rosaceae).Pl. Syst. Evol. 160: 207–218.CrossRefGoogle Scholar
  46. Omodeo P. (1952): Cariologica dei Lumbricidae.Caryologia 4: 173–275.Google Scholar
  47. van Oostrum H., Sterk A.A. &Wijsman H.J.W. (1985): Genetic variation in agamospermous microspecies ofTaraxacum sectionErythrosperma and sectionObliqua.Heredity 55: 223–228.Google Scholar
  48. Proctor M.C.F., Proctor M.E. &Groenhof A. (1989): Evidence from peroxidase polymorphism on the taxonomy and reproduction of someSorbus populations in south-west England.New Phytol. 112: 569–575.CrossRefGoogle Scholar
  49. Richards A.J. (1968):The biosystematics of Taraxacum. Ph.D. Thesis, University of Durham, Durham.Google Scholar
  50. Richards A.J. (1969): [Reports]. In:Löve Á., IOPB chromosome number reports XXIII.Taxon 18: 560–562.Google Scholar
  51. Richards A.J. (1970): Eutriploid facultative agamospermy inTaraxacum.New Phytol. 69: 761–774.CrossRefGoogle Scholar
  52. Richards A.J. (1972a): The karyology of someTaraxacum species from alpine regions of Europe.Bot. J. Linn. Soc. 64: 47–59.Google Scholar
  53. Richards A.J. (1972b): [Reports]. In:Löve Á., IOPB chromosome number reports XXXV.,Taxon 21: 165–166.Google Scholar
  54. Richards A.J. (1973): The origin ofTaraxacum agamospecies.Bot. J. Linn. Soc. 66: 189–211.Google Scholar
  55. Richards A.J. (1986):Plant breeding systems. Allen & Unwin, London.Google Scholar
  56. Richards A.J. (1989a): A comparison of within-plant karyological heterogeneity between agamospermous and sexualTaraxacum (Compositae) as assesed by the nucleolar organizer chromosome.Pl. Syst. Evol. 163: 177–185.CrossRefGoogle Scholar
  57. Richards A.J. (1989b): The evolution of copper tolerance in apomicticTaraxacum.Apomixis Newslett. 1: 37–40.Google Scholar
  58. Richards A.J. (1996): Breeding systems in flowering plants and the control of variability.Folia Geobot. Phytotax. 31: 283–293.Google Scholar
  59. Saura A., Lokki J., Lankinen P. &Suomalainen E. (1976): Genetic polymorphism and evolution in parthenogenetic animals. III.Hereditas 82: 79–100.PubMedCrossRefGoogle Scholar
  60. Sørensen Th. (1958): Sexual chromosome aberrants in triploid apomicticTaraxaca.Bot. Tidsskr. 54: 1–22.Google Scholar
  61. Sørensen Th. &Gudjonsson G. (1946): Spontaneous chromosome aberrants in apomicticTaraxaca.Biol. Skr. 4: 2–48.Google Scholar
  62. Stebbins G.L. (1950):Variation and evolution in plants. Columbia, New York.Google Scholar
  63. Sterk A. (1987): Aspects of the population biology of sexual dandelions in the Netherlands. In:Huiskes A.H.L., Blom C.W.P.M. & Rozema J. (eds.),Vegetation between land and sea, Dordrecht, pp. 284–290.Google Scholar
  64. Strobel E., Dunsmuir P. &Rubin G.M. (1979): Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersal repeated gene families inDrosophila.Cell 17: 429–439.PubMedCrossRefGoogle Scholar
  65. Suomalainen E. (1969): Evolution in parthenogeneticCurculionidae.Evol. Biol. 3: 261–296.Google Scholar
  66. Suomalainen E., Saura A. &Lokki J. (1976): Evolution of parthenogenetic insects.Evol. Biol. 9: 209–257.Google Scholar
  67. Woodruff R.C. &Thompson J.N. (1980): Hybrid release of mutator activity and the genetic structure of natural populations.Evol. Biol. 12: 129–162.Google Scholar
  68. Woodruff R.C., Thompson J.N. &Lyman R.F. (1979): Intraspecific hybridization and the release of mutator activity.Nature 278: 277–279.PubMedCrossRefGoogle Scholar
  69. Yamaguchi S. (1978): Biosystematics vol. II. In:Proceedings of the 8th Annual Symposium on Plant Biosystematics, Shirahama, Wakayama, pp. 35–43.Google Scholar

Copyright information

© Institute of Botany 1996

Authors and Affiliations

  • A. John Richards
    • 1
  1. 1.Department of Agricultural and Environmental Science, Ridley BuildingUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations