Advertisement

Folia Geobotanica

, Volume 31, Issue 3, pp 355–371 | Cite as

North American black-fruited hawthorns. I. Variation in floral construction, breeding system correlates, and their possible evolutionary significance inCrataegus sect.Douglasii London

  • Timothy A. Dickinson
  • Svenja Belaoussoff
  • Rhoda M. Love
  • M. Muniyamma
Apomixis and Taxonomy Proceedings of the Symposium held in Pruhonice, Czech Republic 1995; edited by A.J. Richards, J. Kirschner, J. Stepanek & K. Marhold

Abstract

Differences in the numbers of stamens and styles per flower are conspicuous features of variation in North American hawthorns (Crataegus L.). Variation in stamen number between individuals is discontinuous, with modes of approximately 20 and 10 (or fewer). In North American black-fruited sectionDouglasii Loudon the 10-stamen morphotype is exclusively polyploid, whereas the 20-stamen morphotype comprises both diploids and polyploids. Polyploidy is associated with apospory, self-fertility, and varying degrees of pollen sterility. Variation in stamen number may also be correlated with variation in distribution, phenology, leaf shape, and other features of floral morphology, leading to recognition of taxa at the specific or infraspecific level. Comparable variation in stamen number is virtually unknown in Eurasian hawthorns, as in the majority of flowering plants. In sectionDouglasii stamen number morphotypes have been recognized as either varieties or species; although correlations between stamen number and other features are not as straightforward as was previously surmised, the higher rank appears to be appropriate. These data on breeding system and morphological variation may be explainable in terms of hypotheses linking gametophytic apomixis, polyploidization, and optimal strategies for pollen dispersal.

Keywords

Apomixis Crataegus Polyploidy Stamen number Taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M.P. (1969): Differential staining of aborted and non-aborted pollen.Stain Technol. 44: 117–122.PubMedGoogle Scholar
  2. Bachmann K.K. (1983): Evolutionary genetics and the genetic control of morphogenesis in flowering plants. In:Hecht M.K., Wallace B. &Prance G.T. (eds.),Evolutionary Biology, Plenum Publishing Corp., New York, pp. 157–208.Google Scholar
  3. Bachmann K.K., Chambers K.L. &Price H.J. (1980): Genetic polymorphisms for canalized morphological characters are ubiquitous inMicroseris (Asteraceae: Lactucaceae). In:2nd International Congress of Systematic and Evolutionary Biology (Abstracts of contributed papers), University of British Columbia, Vancouver BC, p. 411.Google Scholar
  4. Baldwin W.K.W. (1958): Plants of the Clay Belt of northern Ontario and Qubec.Bull. Natl. Mus. Canada 156.Google Scholar
  5. Bradshaw A.D. (1971): The significance of hawthorns. In: Standing Committee for Local History (ed.),Hedges and local history, National Council of Social Service, London, pp. 20–29.Google Scholar
  6. Brouillet L. &Whetstone R.D. (1993): 1. Climate and physiography. In: Flora of North America Editorial Committee (ed.),Flora of North America north of Mexico 1, Oxford University Press, New York, pp. 15–46.Google Scholar
  7. Brunsfeld S.J. &Johnson F.D. (1990): Cytological, morphological, ecological and phenological support for specific status ofCrataegus suksdorfii (Sarg.) Kruschke.Madroño 37: 274–282.Google Scholar
  8. Campbell C.S. &Dickinson T.A. (1990): Apomixis, patterns of morphological variation, and species concepts in subfamilyMaloideae (Rosaceae).Syst. Bot. 15: 124–135.CrossRefGoogle Scholar
  9. Campbell C.S., Greene C.W. &Dickinson T.A. (1991): Reproductive biology in subf.Maloideae (Rosaceae).Syst. Bot. 16: 333–349.CrossRefGoogle Scholar
  10. Charnov E.L. (1982):The theory of sex allocation. Princeton University Press, Princeton.Google Scholar
  11. Christensen K.I. (1992): Revision ofCrataegus sect.Crataegus and nothosect.Crataeguineae (Rosaceae-Maloideae) in the old world.Syst. Bot. Monogr. 35: 1–199.Google Scholar
  12. Cruden R.W. (1977): Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants.Evolution 31: 32–46.CrossRefGoogle Scholar
  13. Cruden R.W. &Miller-Ward S. (1981): Pollen-ovule ratio, pollen size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis.Evolution 35: 964–974.CrossRefGoogle Scholar
  14. Curtis A.B. (1986):Upper Elk meadows research natural area. USDA, Forest Service, Pacific Northwest Forest and Range experiment Station, Portland.Google Scholar
  15. Denton G.H. &Hughes T.J. (eds.) (1981):The last great ice sheets. Wiley-Interscience Publications, John Wiley & Sons, New York.Google Scholar
  16. Dickinson T.A. (1985): Biology of Canadian weeds. 68.Crataegus crus-galli L. sensu lato.Canad. J. Pl. Sci. 65: 641–654.CrossRefGoogle Scholar
  17. Dickinson T.A. &Campbell C.S. (1991): Population structure and reproductive ecology in theMaloideae (Rosaceae).Syst. Bot. 16: 350–362.CrossRefGoogle Scholar
  18. Dickinson T.A. & Love R.M. (in press): What IS Douglas hawthorn? In:Kaye T.N. (ed.),Conservation and management of native plants and fungi, Native Plant Society of oregon, Corvallis.Google Scholar
  19. Dickinson T.A. &Phipps J.B. (1985): Studies inCrataegus L. (Rosaceae: Maloideae) XIII. Degree and pattern of variation inCrataegus sectionCrus-galli in Ontario.Syst. Bot. 10: 322–337.CrossRefGoogle Scholar
  20. Dickinson T.A. &Phipps J.B. (1986): Studies inCrataegus L. (Rosaceae: Maloideae) XIV. The breeding system ofCrataegus crus-galli sensu lato in Ontario.Amer. J. Bot. 73: 116–130.CrossRefGoogle Scholar
  21. Eggleston W.W. (1908): TheCrataegi of the northeastern United States and adjacent Canada.Rhodora 10: 73–84.Google Scholar
  22. Ellstrand N.C. (1983): Floral formula inconstancy within and among plants and populations ofIpomopsis aggregata (Polemoniaceae).Bot. Gaz. 144: 119–123.CrossRefGoogle Scholar
  23. Evans R.C. (1994):Floral development of 10- and 20-stamen morphotypes of Crataegussection Douglasii. M.Sc. Thesis, University of Toronto, Toronto.Google Scholar
  24. Evans R.C. &Dickinson T.A. (1996): North American black-fruited hawthorns: II. Floral development of 10- and 20-stamen morphotypes ofCrataegus sectionDouglasiiLoud.Amer. J. Bot. 83: 961–978.CrossRefGoogle Scholar
  25. Fernald M.L. (1935): Critical plants of the upper Great Lakes region of Ontario and Michigan.Rhodora 37: 197–222 (Plates 352–355), 238–262 (Plates 356–362), 272–301 (Plates 363–375), 324–341 (Plates 376–379).Google Scholar
  26. Gallardo R., Dominguez E. &Muñoz J.M. (1994): Pollen-ovule ratio, pollen size, and breeding system inAstragalus (Fabaceae) subgenusEpiglottis: a pollen and seed allocation approach.Amer. J. Bot. 81: 1611–1619.CrossRefGoogle Scholar
  27. Guitian J. &Fuentes M. (1992): Reproductive ecology ofCrataegus monogyna in northwestern Spain.Acta Oecol. 13: 3–11.Google Scholar
  28. Harder L.D. &Thomson J.D. (1989): Evolutionary options for maximizing pollen dispersal of animal-pollinated plants.Amer. Naturalist 133: 323–344.CrossRefGoogle Scholar
  29. Harlan J.R. &de Wet J.M.J. (1975): On Ö. Winge and a prayer.Bot. Rev. (Lancaster) 41: 361–390.CrossRefGoogle Scholar
  30. Herr J.M., Jr. (1971): A new clearing-squash technique for the study of ovule development in angiosperms.Amer. J. Bot. 58: 785–790.CrossRefGoogle Scholar
  31. Herr J.M., Jr. (1995): The origin of the ovule.Amer. J. Bot. 82: 547–564.CrossRefGoogle Scholar
  32. Hickman J.C. (ed.) (1993):The Jepson Manual—higher plants of California. University of California Press, Berkeley.Google Scholar
  33. Huston M.A. (1994):Biological diversity—the coexistence of species on changing landscapes. Cambridge University Press, Cambridge.Google Scholar
  34. Klotz G. (1967): Numerische Taxonomie und moderne Verwandschaftsforschung.Feddes Repert. 75: 115–130.CrossRefGoogle Scholar
  35. Kruschke E.P. (1965):Contributions to the taxonomy of Crataegus. Milwaukee Public Museum, Milwaukee.Google Scholar
  36. Legendre L. &Legendre P. (1983):Numerical ecology. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  37. Lewis W.H. (1980): Polyploidy in species populations. In:Lewis W.H. (ed.),Polyploidy— biological relevance, Plenum Press, New York.Google Scholar
  38. Love R. &Feigen M. (1978): Interspecific hybridization between native and naturalizedCrataegus (Rosaceae) in western Oregon.Madroño 25: 211–217.Google Scholar
  39. Maher R.V., Argus G.W., Harms V.L. & Hudson J.H. (1979): The rare vascular plants of Saskatchewan.Syllogeus 20.Google Scholar
  40. Marquis R.J. &Voss E.G. (1981): Distributions of some western North American plants disjunct in the Great Lakes region.Michigan Bot. 20: 53–82.Google Scholar
  41. Marshall D.R. &Brown A.H.D. (1981): The evolution of apomixis.Heredity 47: 1–15.Google Scholar
  42. McAndrews J.H., Liu K.-B., Manville G.C., Prest V.K. &Vincent J.S. (1987): Plate 4—Environmental change after 9000 BC. In:Harris R.C. &Matthews G.J. (eds.),Historical Atlas of Canada—From the beginning to 1800, University of Toronto Press, Toronto.Google Scholar
  43. Mogie M. (1992):The evolution of asexual reproduction in plants. Chapman & Hall, London.Google Scholar
  44. Morton J.K. &Hogg E.H. (1989): Biogeography of island floras in the Great Lakes. II. Plant dispersal.Canad. J. Bot. 67: 1803–1820.Google Scholar
  45. Muniyamma M. &Phipps J.B. (1979a): [Studies inCrataegus (Rosaceae: Maloideae).I.] Cytological proof of apomixis inCrataegus (Rosaceae).Amer. J. Bot. 66: 149–155.CrossRefGoogle Scholar
  46. Muniyamma M. &Phipps J.B. (1979b): [Studies inCrataegus (Rosaceae: Maloideae). II.] Meiosis and polyploidy in Ontario species ofCrataegus in relation to their systematics.Canad. J. Genet. Cytol. 21: 231–241.Google Scholar
  47. Muniyamma M. &Phipps J.B. (1984): Studies inCrataegus XI. Further cytological evidence for the occurrence of apomixis in North American hawthorns.Canad. J. Bot. 62: 2316–2324.Google Scholar
  48. Muniyamma M. &Phipps J.B. (1985): Studies inCrataegus XII. Cytological evidence for sexuality in some diploid and tetraploid species of North American hawthorns.Canad. J. Bot. 63: 1319–1324.CrossRefGoogle Scholar
  49. Phipps J.B. &Muniyamma M. (1980): [Studies inCrataegus (Rosaceae: Maloideae) III.] A taxonomic revision ofCrataegus (Rosaceae) in Ontario.Canad. J. Bot. 58: 1621–1699.Google Scholar
  50. Phipps J.B., Robertson K.R., Smith P.G. &Rohrer J.R. (1990): A checklist of the subfamilyMaloideae (Rosaceae).Canad. J. Bot. 68: 2209–2269.Google Scholar
  51. Pimentel R.A. (1979):Morphometrics—the multivariate analysis of biological data. Kendall-Hunt Publishing Co., Dubuque.Google Scholar
  52. Ptak K. (1986): Cyto-embryological investigations on the Polish representatives of the genusCrataegus L. I. Chromosome numbers; embryology of diploid and tetraploid species.Acta Biol. Cracov., Ser. Bot. 28: 107–122.Google Scholar
  53. Ptak K. (1989): Cyto-embryological investigations on the Polish representatives of the genusCrataegus L. II. Embryology of triploid species.Acta Biol. Cracov., Ser. Bot. 31: 97–112, Pl. 5.Google Scholar
  54. Rickett H.W. (1936): Forms ofCrataegus pruinosa.Bot. Gaz. 97: 780–793.CrossRefGoogle Scholar
  55. Rickett H.W. (1937): Forms ofCrataegus crus-galli.Bot. Gaz. 98: 609–616.CrossRefGoogle Scholar
  56. Robertson K.R. (1974): The genera ofRosaceae in the southeastern United States.J. Arnold Arbor. 55: 303–332, 344–401, 611–662.Google Scholar
  57. Rohlf F.J. (1993):NTSYS-pc. Version 1.80. Exeter Software, Ltd., Setauket.Google Scholar
  58. Smith, P.G. &Phipps J.B. (1988): Studies inCrataegus (Rosaceae, Maloideae), XIX. Breeding behavior in OntarioCrataegus seriesRotundifoliae.Canad. J. Bot. 66: 1914–1923.Google Scholar
  59. Smith P.G., Phipps J.B. &Dickinson T.A. (1980): Accumulated heat in relation toCrataegus flowering. In:2nd International Congress of Systematic and Evolutionary Biology (Abstracts of contributed papers), University of British Columbia, Vancouver, p. 353.Google Scholar
  60. Sokal R.R. &Rohlf F.J. (1973):Introduction to biostatistics. W.H. Freeman, San Francisco.Google Scholar
  61. Soltis P.S., Doyle J.J. &Soltis D.E. (1992): Molecular data and polyploid evolution in plants. In:Soltis P.S., Soltis D.E. &Doyle J.J. (eds.),Molecular systematics of plants, Chapman and Hall, New York, pp. 177–201.Google Scholar
  62. Statistical Sciences, Inc. (1993):S-PLUS for Windows User's Manual, Version 3.1. Statistical Sciences, Inc., Seattle.Google Scholar
  63. Taylor R.L. &Mulligan G.A. (1968):Flora of the Queen Charlotte Islands, Part 2. Cytological aspects of the vascular plants. Canada Department of Agriculture, Ottawa.Google Scholar
  64. Taylor T.M.C. (1973):The rose family (Rosaceae)of British Columbia. British Columbia Provincial Museum, Victoria.Google Scholar
  65. Tucker S.C. (1987): Floral initiation and development in legumes. In:Stirton C.H. (ed.),Advances in legume systematics 3, Royal Botanic Gardens, Kew pp. 183–239.Google Scholar
  66. Tucker S.C. (1988): Loss versus suppression of floral parts. In:Leins P., Tucker S.C. &Endress P.K. (eds.),Aspects of floral development. J. Cramer, Gebr. Borntraeger Verlagsbuchhandlung, Berlin, pp. 69–82.Google Scholar
  67. Wells T.C. &Phipps J.B. (1989): Studies inCrataegus (Rosaceae: Maloideae). XX. Interserial hybridization betweenCrataegus monogyna (seriesOxyacanthae) andCrataegus punctata (seriesPunctatae) in southern Ontario.Canad. J. Bot. 67: 2465–2472.Google Scholar
  68. Whitlock M.C. (1995): Variance-induced peak shifts.Evolution 49: 252–259.CrossRefGoogle Scholar
  69. Wilkinson L. (1990):SYGRAPH: The system for graphics. Systat Inc., Evaston.Google Scholar
  70. Yeboah Gyan K. &Woodell S.R.J. (1987): Analysis of insect pollen loads and pollinator efficiency of some common insect visitors of four species of woodyRosaceae.Funct. Ecol. 1: 269–274.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 1996

Authors and Affiliations

  • Timothy A. Dickinson
    • 1
    • 2
  • Svenja Belaoussoff
    • 2
  • Rhoda M. Love
    • 3
  • M. Muniyamma
    • 4
  1. 1.Vascular Plant Herbarium (TRT), Center for Biodiversity and Conservation BiologyRoyal Ontario MuseumTorontoCanada
  2. 2.Department of BotanyUniversity of TorontoTorontoCanada
  3. 3.EugeneU.S.A.
  4. 4.Department of Research and Post-graduate Studies in BotanyUniversity of MysoreManasagangotriIndia

Personalised recommendations