Neutral glycolipid composition of primary human brain tumors

  • L. P. K. Singh
  • D. K. Pearl
  • T. K. Franklin
  • P. M. Spring
  • B. W. Scheithauer
  • S. W. Coons
  • P. C. Johnson
  • S. E. Pfeiffer
  • J. Li
  • J. C. A. Knott
  • A. J. Yates


Neutral glycolipids (NGL) were isolated and quantitated in 98 primary human brain tumors; 19 low grade astrocytomas (LGA), 12 anaplastic astrocytomas (AA), 37 high grade astrocytomas (HGA), 18 oligodendroglial tumors, and 12 primitive neuroectodermal tumors (PNET). In 38 of these, the nature of the hexose in the cerebroside was determined using immunothin-layer chromatographic techniques. Galactosylceramide (GalCer) was the major ceramide monohexoside (CMH), and glucosylcerebroside never comprised more than 6% of this fraction in any tumor type. Furthermore, there was no correlation between the proportion of glucosylcerebroside and histological diagnosis. AA had the most characteristic neutral glycolipid pattern, with high levels of total lipid, total neutral glycolipid, CMH, and ceramide dihexoside (CDH) but low water contents. Consistent with this glycolipid composition is the finding that AA usually had neither ceramide trihexoside (CTH) nor globoside. Oligodendrogliomas were somewhat similar to AA in having high levels of CMH and infrequently having CTH or globoside. However, oligodendrogliomas had low water and total lipid contents. PNET had low levels of total ipid, total NGL, and CMH, but frequently contained CTH and globoside. LGA had high water contents but low levels of total lipid and CMH. HGA tended to have intermediate levels of almost all constituents analyzed, probably reflecting the pronounced cellular heterogeneity of these tumors. The frequent presence of GalCer in astrocytomas raises the possibility that some of these contain a population of cells that are related to the oligodendroglial lineage. However, the low amounts of GalCer and infrequent presence of sulfatide in PNET is consistent with their lack of differentiation toward oligodendrocytes. It will be of interest to determine if the neutral glycolipid patterns reported here will correlate with patient survival and be of prognostic significance.

Index Entries

Glycolipid glioma astrocytoma glioblastoma multiforme cerebroside brain tumor lipid oligodendrocyte astrocyte GalCer 



anaplastic astrocytoma


ceramide dihexoside


ceramide monohexoside


ceramide trihexoside




asialo GM1




glioblastoma multiforme




high grade astrocytoma


high performance thin layer chromatography


low grade astrocytoma




neutral glycolipids




phosphate buffered saline


primitive neuroectodermal tumor


thin layer chromatography


World Health Organization


  1. Bansal R., Gard A. L., and Pfeiffer S. E. (1988) Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid.J. Neurosci. Res. 21, 260–267.PubMedCrossRefGoogle Scholar
  2. Bansal R. and Pfeiffer S. E. (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids.Proc. Natl. Acad. Sci. USA 86, 6181–6185.PubMedCrossRefGoogle Scholar
  3. Bansal R., Warrington A. E., Gard A. L., Ranscht B., and Pfeiffer S. E. (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development.J. Neurosci. Res. 24, 548–557.PubMedCrossRefGoogle Scholar
  4. Bansal R., Stefansson K., and Pfeiffer S. E. (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/04-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside.J. Neurochem. 58, 2221–2229.PubMedCrossRefGoogle Scholar
  5. Benjamins J. A. and Dyer C. A. (1990) Glycolipids and transmembrane signaling in oligodendroglia.Ann. NY Acad. Sci. 605, 90–100.PubMedCrossRefGoogle Scholar
  6. Buckley N. E., Matyas G. R., and Spiegel S. (1990) The bimodal growth response of Swiss 3T3 cells to the B subunit of cholera toxin is independent of the density of its receptor, ganglioside GM1.Exp. Cell Res. 189, 13–21.PubMedCrossRefGoogle Scholar
  7. Burger P. C. and Kleihues P. (1989) Cytologic composition of the untreated glioblastoma with implications for evaluation of needle biopsies.Cancer 63, 2014–2023.PubMedCrossRefGoogle Scholar
  8. Daumas-Duport C., Scheithauer B., O’Fallon J., and Kelly P. (1988) Grading of astrocytomas a simple and reproducible method.Cancer 62, 2152–2165.PubMedCrossRefGoogle Scholar
  9. de la Monte Suzanne M. (1989) Uniform lineage of oligodendrogliomas.American Journal of Pathology 135, 529–540.Google Scholar
  10. Dohan F. C., Kornblith P. L., Wellum G. R., Pfeiffer S. E., and Levine L. (1977) S-100 protein and 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human brain tumors.Acta Neuropathol. (Berl.) 40, 123–128.CrossRefGoogle Scholar
  11. Dyer C. A. and Benjamins J. A. (1990) Glycolipids and transmembrane signaling: Antibodies to galactocerebroside cuase an influx of calcium in oligodendrocytes.J. Cell Biol. 111, 625–633.PubMedCrossRefGoogle Scholar
  12. Eto Y. and Shinoda S. (1982) Gangliosides and neutral glycosphingolipids in human brain tumors: Specificity and their significance.Adv. Exp. Med. Biol. 152, 279–290.PubMedGoogle Scholar
  13. Fulling K. H. and Garcia D. M. (1985) Anaplastic astrocytoma of the adult cerebrum. Prognostic value of histologic features.Cancer 55, 928–931.PubMedCrossRefGoogle Scholar
  14. Fulton B. P., Burne J. F., and Raff M. C. (1993) Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake.J. Neurosci. 12, 4816–4833.Google Scholar
  15. Harris G. and MacWilliam I. C. (1954) Dipping technique for revealing sugars on paper chromatograms.Chem. Ind. XX, 249.Google Scholar
  16. Jellinger K. (1978) Glioblastoma multiforme: Morphology and biology.Acta Neurochir. 42, 5–32.CrossRefGoogle Scholar
  17. Jennemann R., Rodden A., Bauer B. L., Mennel H. D., and Wiegandt H. (1990) Glycosphingolipids of human gliomas.Cancer Res. 50, 7444–7449.PubMedGoogle Scholar
  18. Kanazawa I. and Yamakawa T. (1974) Presence of glucosyl ceramide and lactosyl ceramide in human intracranial tumors.Japan J. Exp. Med. 44, 379–387.Google Scholar
  19. Kashima, T., Tiu, S. N., Merrill, J. E., Vinters H. V., Dawson, G., and Campagnoni A. T. (1993) Expression of oligodendrocyte-associated genes in cell lines derived from human gliomas and neuroblastomas.Cancer Res. 53, 170–175.PubMedGoogle Scholar
  20. Laabich A., Graff M.-N., Dunel-Erb S., Sensenbrenner M., and Delaunoy J.-P. (1991) A study of in vitro and in vivo morphological changes of ependymal cells induced by galactocerebrosides.Glia 4, 504–513.PubMedCrossRefGoogle Scholar
  21. Laabich A., Delaunoy J. P., Cremel G., and Staedel C. (1992) Modifications of ependymal cells membranes by galactocerebrosides in cell culture.Neurosci. Lett. 142, 196–199.PubMedCrossRefGoogle Scholar
  22. Morell P., Quarles R. H., and Norton W. T. (1989) Formation, structure and biochemistry of myelin, inBasic Neurochemistry, 4th ed. (Siegel G., Agranoff B., Albers R. W. and Molinoff P., eds.), pp. 109–136, Raven, NY.Google Scholar
  23. Neskovic N., Sarlieve L., Nussbaum J. L., Kostic D., and Mandel P. (1972) Quantitative thin-layer chromatography of glycolipids in animal tissues.Clin. Chim. Acta 38, 147–153.PubMedCrossRefGoogle Scholar
  24. Pfeiffer E. E., Sundarraj N., Dawson G., and Kornblith P. L. (1979) Human acoustic neurinomas: Nervous system specific biochemical parameters.Acta Neuropathol. (Berl.) 47, 27–31.CrossRefGoogle Scholar
  25. Rorke L. B., Gilles F. H., Davis R. L., and Becker L. E. (1985) Revision of the World Health Organization Classification of Brain Tumors for Childhood Brain Tumors.Cancer 56, 1869–1886.PubMedCrossRefGoogle Scholar
  26. Shimomura K. and Kishimoto Y. (1983) An improved procedure for the quantitative determination and characterization of sulfatides in rat kidney and brain by high-performance liquid chromatography.Biochim. Biophys. Acta. 754, 93–100.PubMedGoogle Scholar
  27. Spiegel S. (1989) Inhibition of protein kinase C-dependent cellular proliferation by interaction of endogenous ganglioside GM1 with the B subunit of cholera toxin.J. Biol. Chem. 264, 16512–16517.PubMedGoogle Scholar
  28. Vandenheuvel F. A. (1965) Study of biological structure at the molecular level with stereomodel projection. I. The structure of myelin in relation to other membrane systems.J. Am. Oil Chem. Soc. 42, 481–492.PubMedCrossRefGoogle Scholar
  29. Warrington A. E. and Pfeiffer S. E. (1992) Proliferation and differentiation of O4+ oligodendrocytes in postnatal rat cerebellum: Analysis in unfixed tissue slices using anti-glycolipid antibodies.J. Neurosci. Res. 33, 338–353.PubMedCrossRefGoogle Scholar
  30. Yates A. J. (1992) An overview of principles for classifying brain tumors.Mol. Chem. Neuropath. 17, 103–120.CrossRefGoogle Scholar
  31. Yates A. J., VanBrocklyn J., Saqr H. E., Guan Z., Stokes B. T., and O’Dorisio M. S. (1993) Mechanisms through which gangliosides inhibit PDGF-stimulated mitogenesis in intact Swiss 3T3 Cells: Receptor tyrosine phosphorylation, intracellular calcium, and receptor binding.Exp. Cell. Res. 204, 38–45.PubMedCrossRefGoogle Scholar
  32. Zulch K. J. (1980) Principles of the New World Health Organization (WHO) Classification of Brain Tumors.Neuroradiology 19, 59–66.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • L. P. K. Singh
    • 1
  • D. K. Pearl
    • 2
  • T. K. Franklin
    • 1
  • P. M. Spring
    • 1
  • B. W. Scheithauer
    • 3
  • S. W. Coons
    • 4
  • P. C. Johnson
    • 4
  • S. E. Pfeiffer
    • 5
  • J. Li
    • 1
  • J. C. A. Knott
    • 1
  • A. J. Yates
    • 1
  1. 1.Division of NeuropathologyThe Ohio State UniversityColumbus
  2. 2.Department of StatisticsThe Ohio State UniversityColumbus
  3. 3.Department of Laboratory Medicine and PathologyMayo ClinicRochester
  4. 4.Division of NeuropathologyBarrow Neurological InstitutePhoenix
  5. 5.Department of MicrobiologyUniversity of Connecticut Health CenterFarmington

Personalised recommendations