Advertisement

Molecular and Chemical Neuropathology

, Volume 28, Issue 1–3, pp 127–133 | Cite as

Possible regulation of high-affinity glutamate uptake in synaptosomes of normal and epileptic mice

  • José G. Ortiz
  • Olga Claudio
  • Glysette Santiago
  • Mayra L. Cordero
  • Jennifer Nieves
Part VI Neurodegenerative Mechanisms: Clinical and Experimental

Abstract

Glutamate (Glu) uptake is the primary mechanism for its removal from the synapse. In genetic audiogenic seizures (AGS), Glu uptake is elevated prior to the appearance of seizures. Increased Glu uptake is also observed in synaptosomes from normal mice preincubated with lithium or nitroarginine, an NO synthase inhibitor. Pertussis and cholera toxins cause a marked reduction in Glu uptake. In contrast, neither lithium nor nitroarginine affected Glu uptake by synaptosomes from genetic epileptic mice. Arachidonic acid inhibits Glu uptake, whereas synaptosomes from epileptic mouse brain appear to be more sensitive to arachidonic acid as indicated by a shift of the inhibition curve to the left. These observations are indicative of the possible regulation of Glu uptake by second messengers and its alteration in genetic epilepsy.

Index Entries

Nitroarginine pertussis toxin cholera toxin arachidonic acid glutamate uptake audiogenic seizures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amara S. G., Vanderberg R. J., Fairman W. A., Seal R., Wadiche J., Kavanaugh M. P., and Arriza J. L. (1995) Excitatory amino acid transporters: molecular insights in structure, function and pharmacology.J. Neurochem. 64, S73A.Google Scholar
  2. Bradford M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Analyt. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  3. Bridges R. J., Stanley M. S., Anderson M. W., Cotman C. W., and Chamberling A. R. (1991) Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine 2,4-dicarboxylate diastereomer.J. Med. Chem. 34, 717–725.PubMedCrossRefGoogle Scholar
  4. Choudhury K. and Roginski R. S. (1994) Cloning of novel 5′ termini of rat brain glutamate transporter mRNA that express two transporter proteins.Soc. Neurosci. abstract, 267.12.Google Scholar
  5. Cordero M. L., Ortiz J. G., and Santiago G. (1994a) High affinity sodium dependent [3H]glutamate uptake systems in normal and audiogenic seizure-susceptible mice.Devel. Brain Res. 78, 44–48.CrossRefGoogle Scholar
  6. Cordero M. L., Ortiz J. G., Santiago G., Negrón A., and Moreira J. A. (1994b) Altered GABAergic and glutamatergic transmission audiogenic seizure-susceptible mice.Mol. Neurobiol. 9, 253–258.PubMedCrossRefGoogle Scholar
  7. Fairman W. A., Vanderberg R. J., Arriza J. L., Kavanaugh M. P., and Amara S. G. (1994) Cloning and characterization of a novel glutamate transporter from human brain.Soc. Neurosci. abstract 382. 1.Google Scholar
  8. Hediger M. A. (1994) Structure, function and evolution of solute transporters in prokaryotes and eukaryotes,J. Exp. Biol. 196, 15–49.PubMedGoogle Scholar
  9. Kanai Y. and Hediger M. B. (1992) Primary structure and functional characterization of a high-affinity glutamate transporter,Nature 360, 467–469.PubMedCrossRefGoogle Scholar
  10. Kanai Y., Tate N., and Endou H. A. (1994) Cloning of mouse brain neuronal and glial high-affinity glutamate transporters.Soc. Neurosci. abstract 382.2.Google Scholar
  11. Maki R., Robinson M. B., and Dichter M. A. (1994) The glutamate uptake inhibitorl trans-pyrrolidine-2,4-dicarboxylate depresses excitatory synaptic transmission via a presynaptic mechanism in cultured hippocampal neurons.J. Neurosci. 14, 6754–6762.PubMedGoogle Scholar
  12. Miller K. J. and Hoffman B. J. (1994) Regional differences in the inhibition of glutamate and GABA uptake by NO and cGMP.Soc. Neurosci. abstract 267. 14.Google Scholar
  13. Ortiz J. G., Negrón A. E., Thomas A. P., Cordero M. L., Garcia M. T., Maldonado C. S., Heimer H., Moreira J. A., Aranda J., Santiago G., Cardona S., and Bruno M. S. (1992) GABA and glutamate neurotransmission in the C57BL/10 sps/sps mouse: a mutant with absence-like behavior, inMolecular Neurobiology of Epilepsy (Epilepsy Res. suppl. 9) (Engel J., Jr., et. al., eds.), Elsevier Science, New York.Google Scholar
  14. Ortiz J. G., Claudio O., Santiago G., and Cordero M. L. (1995) Glutamate uptake in experimental epilepsy.Neurochem. Am. Soc. abstract S82C, Santa Monica, CA, March 1995.Google Scholar
  15. Ortiz J. G., Cordero M. L., and Santiago G. (in press) Development and pharmacology of glutamate uptake in audiogenic seizures.Progressive Nature of Epileptogenesis. Engel J., Jr., et al., ed.Google Scholar
  16. Pines G., Danbolt N., Bjoras M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., and Kanner B. I. (1992) Cloning and expression of a rat brainl-glutamate transporter.Nature 360, 464–466.PubMedCrossRefGoogle Scholar
  17. Pogun S., Baumann M. H., and Kuhar M. J. (1994) Nitric oxide inhibits [3H]dopamine uptake.Brain Res. 641, 83–91.PubMedCrossRefGoogle Scholar
  18. Rothstein J. D., Martin L. J., and Kuncl R. W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis.N. Engl. J. Med. 20, 1464–1468.CrossRefGoogle Scholar
  19. Storck T., Schulte S., Hofmann K., and Stoffel W. (1992) Structure, expression, and functional analysis of a Na+ dependent glutamate/aspartate transporter from rat brain.Proc. Natl. Acad. Sci. USA 89, 10,955–10,959.CrossRefGoogle Scholar
  20. Szatkowski M. and Attwell D. (1994) Triggering and execution of neuronal death in brain ischemia: Two phases of glutamate release by different mechanisms.Trends Neurosci. 17, 359–365.PubMedCrossRefGoogle Scholar
  21. Volterra A., Trotti D., Cassutti P., Tromba C., Salvaggio A., Melcangi R. C., and Racagni G. (1992) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes.J. Neurochem. 59, 600–606.PubMedCrossRefGoogle Scholar
  22. Volterra A., Trotti D., and Racagni G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms.Mol. Pharmacol. 46, 986–992.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • José G. Ortiz
    • 1
  • Olga Claudio
    • 1
  • Glysette Santiago
    • 1
  • Mayra L. Cordero
    • 1
  • Jennifer Nieves
    • 1
  1. 1.Department of PharmacologyUniversity of Puerto Rico Medical SchoolSan Juan

Personalised recommendations