Advertisement

Molecular and Chemical Neuropathology

, Volume 29, Issue 1, pp 15–26 | Cite as

Oral aluminum administration during pregnancy and lactation produces gastric and renal lesions in rat mothers and delay in CNS development of their pups

  • B. K. Poulos
  • M. Perazzolo
  • V. M. -Y. Lee
  • R. Rudelli
  • H. M. Wisniewski
  • D. Soifer
Original Articles

Abstract

The expression of the neurofilament protein of the highest molecular weight (NF-H) is developmentally and spatially regulated. For example, the MAb RMO24.9, directed against a phosphorylated epitope in the tail domain of NF-H, immunohistochemically labels specific tracts within the rat brainstem prenatally, but does not label diencephalic tracts until after postnatal day 10 (P10). A diet providing 300 mg/kg/d Al (as Al lactate) to rat dams throughout gestation causes behavioral deficits in their offspring (Bernuzzi et al., 1989). We repeated this regimen by substituting 120 mM Al lactate (pH 6.5) for drinking water during gestation and lactation, and examined the distribution of immunolabeling by RMO 24.9 after exposure to Al. Tracts within the diencephalon that bind RMO 24.9 on P11 in control pups did not bind the MAb until P14 in Al-treated pups. In these preliminary experiments, Al seemed to have caused a developmental delay in the expression of phosphorylated NF-H in the pups of mothers that received Al during gestation. However, subsequent experiments showed that the neuropathology observed—and that reported by other investigators using similar Al levels—may not be the result of the direct effects of Al on the pups. Throughout lactation, treated dams appeared progressively more cachexic. Unlike the normal viscera of pair-watered controls, the stomachs of treated dams were ulcerated, and their kidneys had decreased cortical thickness and contained stones. Lesions such as these compromise a rat’s ability to absorb nutrients, to excrete toxins, and to regulate water and electrolytes. In a lactating dam, these alterations could compromise the dam’s ability to nourish her pups. Our experiments point out that the mechanisms of Al toxicity— already complex in the adult—are further complicated in a system in which the pup is dependent on the mother for delivery of both nutrients and toxins. It is therefore impossible to determine the cause of any neuropathology in the pup in a system where Al delivery overlies a background of multisystem defect and altered maternal homeostasis.

Index Entries

Neurofilament aluminum neurotoxicity heavy neurofilament protein NF-H kidney stomach calculi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernuzzi V., Desor D., and Lehr P. R. (1989) Developmental alterations in offspring of female rats orally intoxicated by aluminum chloride or lactate during gestation.Teratology 40, 21–27.PubMedCrossRefGoogle Scholar
  2. Bertholf R. L., Herman M. M., Savory J., Carpenter R. M., Sturgill B. C., Katsetos C. D., VandenBerg S. R., and Wills M. R. (1989) A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal and neuronal cytoskeletal changes associated with systemic exposure.Toxicol. Appl. Pharmacol. 98, 58–74.PubMedCrossRefGoogle Scholar
  3. Bilkei-Gorzo A. (1993) Neurotoxic effect of enteral aluminum.Food Chem. Toxicol. 31, 357–361.PubMedCrossRefGoogle Scholar
  4. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., and Lee V. M.-Y. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns.J. Neurosci. 7, 3489–3504.PubMedGoogle Scholar
  5. Cherroret G., Bernuzzi V., Desor D., Hutin M.-F., Burnel D., and Lehr P. R. (1992) Effects of postnatal aluminum exposure on choline acetyltransferase activity and learning abilities in the rat.Neurotoxicol. Teratol. 14, 259–264.PubMedCrossRefGoogle Scholar
  6. Corain B., Longato B., Sheikh-Osman A. A., Bombi G. G., and Macca C. (1992) Aluminum carboxylates in aqueous solutions. Part 2. Metal speciation in the AlIII-lactate-OH-H2O system.J. Chem. Soc., Dalton Transactions 169–172.Google Scholar
  7. Dautigny A., Pham-Dinh D., Roussel C., Felix J. M., Nussbaum J. L., and Jolles, P. (1988) The large neurofilament subunit (NF-H) of the rat: cDNA cloning andin situ detection.Biochem. Biophys. Res. Commun. 154, 1099–1106.PubMedCrossRefGoogle Scholar
  8. Donald J. M., Golub M. S., Gershwin M. E., and Keen C. L. (1989) Neurobehavioral effects in offspring of mice given excess aluminum in diet during gestation and lactation.Neurotoxicol. Teratol. 11, 345–351.PubMedCrossRefGoogle Scholar
  9. Forrester T. M., and Yokel R. A. (1985) Comparative toxicity of intracerebroventricular and subcutaneous aluminum in the rabbit.Neuro Toxicology 6, 71–80.Google Scholar
  10. Gilad G. M., Gilad V. H., and Dahl D. (1989) Expression of neurofilament immunoreactivity in developing rat cerebellum in vitro and in vivo.Neurosci. Lett. 96, 7–12.PubMedCrossRefGoogle Scholar
  11. Gold B. G., Storm-Dickerson T., and Austin D. R. (1993) Regulation of aberrant neurofilament phosphorylation in neuronal perikarya. IV. Evidence for the involvement of two signals.Brain Res. 626, 23–30.PubMedCrossRefGoogle Scholar
  12. Golub M. S., Donald J. M., Gershwin M. E., and Keen C. L. (1989) Effects of aluminum ingestion on spontaneous motor activity of mice.Neurotoxicol. Teratol. 11, 231–235.PubMedCrossRefGoogle Scholar
  13. Golub M. S., Keen C. L., and Gershwin M. E. (1992) Neurodevelopmental effect of aluminum in mice: fostering studies.Neurotoxicol. Teratol. 14, 177–182.PubMedCrossRefGoogle Scholar
  14. Gomez M., Domingo J. L., and Llobet J. M. (1991) Developmental toxicity evaluation of oral aluminum in rats: influence of citrate.Neurotoxicol. Teratol. 13, 323–328.PubMedCrossRefGoogle Scholar
  15. Hafidi A. and Romand R. (1989) First appearance of Type II neurons during ontogenesis in the spiral ganglion of the rat. An immunocytochemical study.Dev. Brain Res. 48, 143–149.CrossRefGoogle Scholar
  16. Hafidi A., Despres G., and Romand R. (1990) Cochlear innervation in the developing rat: an immunocytochemical study of neurofilament and spectrin proteins.J. Comp. Neurol. 300, 153–161.PubMedCrossRefGoogle Scholar
  17. Harris J., Ayyub C., and Shaw G. (1991) A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H.J. Neurosci. Res. 30, 47–62.PubMedCrossRefGoogle Scholar
  18. Johnson G. V. W., and Jope R. S. (1988) Phosphorylation of rat brain cytoskeletal proteins in increased after orally administered aluminum.Brain Res. 456, 95–103.PubMedCrossRefGoogle Scholar
  19. Johnson G. V. W., Watson A. J., Jr, Lartius R., Uemura E., and Jopa R. S. (1992) Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats.Neuro Toxicology 13, 463–474.Google Scholar
  20. Julien J.-P. and Mushynski W. E. (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments.J. Biol. Chem. 258, 4019–4025.PubMedGoogle Scholar
  21. Katsetos C. D., Savory J., Herman M. M., et al. (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminium maltol in rabbits.Neuropathol. Appl. Neurobiol. 16, 511–528.PubMedCrossRefGoogle Scholar
  22. Kavlock R. J., Logsdon T., and Gray J. A. (1993) Fetal development in the rat following disruption of maternal renal function during pregnancy.Teratology 48, 247–258.PubMedCrossRefGoogle Scholar
  23. Kokko J. (1988) Chronic renal failure in:Cecil Textbook of Medicine (Wyngaarden J. B. and Smith L. H., eds.), pp. 563–573, W. B. Saunders, Philadelphia.Google Scholar
  24. Lee V. M.-Y., Carden M. J., and Trojanowski J. Q. (1986) Novel monoclonal antibodies provide evidence for the in situ existence of nonphosphorylated form of the largest neurofilament subunit.J. Neurosci. 6, 850–858.PubMedGoogle Scholar
  25. Lee V. M.-Y., Carden M. J., Schlaepfer W. W., and Trojanowski J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.J. Neurosci. 7, 3474–3488.PubMedGoogle Scholar
  26. Lieberburg I., Spinner N., Snyder S., Anderson J., Goldgaber D., Smulowitz M., Carroll Z., Emanuel B., Breitner J., and Rubin L. (1989) Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): Developmental and tissue expression in the rat, and mapping of its human homologue to chromosomes 1 and 22.Proc. Natl. Acad. Sci. U.S.A. 86, 2463–2467.PubMedCrossRefGoogle Scholar
  27. Muller G., Bernuzzi V., Desor D., Hutin M.-F., Burnel D., and Lehr P. R. (1990) Developmental alterations in offspring of female rats orally intoxicated by aluminum lactate at different gestation periods.Teratology 42, 253–261.PubMedCrossRefGoogle Scholar
  28. Muller G., Hutin M.-F., Burnel D., and Lehr P. R. (1992) Aluminum transfer through milk in female rats intoxicated by aluminum chloride.Biol. Trace Element Res. 34, 79–87.CrossRefGoogle Scholar
  29. Muller G., Burnel D., Gery A., and Lehr R. P. (1993) Element variations in pregnant and nonpregnant rats orally intoxicated by aluminum lactate.Biol. Trace Element Res. 39, 211–219.CrossRefGoogle Scholar
  30. Muller G., Hutin M.-F., Burnel D., and Lehr P. R. (1992) Aluminum transfer through milk in female rats intoxicated by aluminum chloride.Biol. Trace Element Res 34, 79–87.CrossRefGoogle Scholar
  31. Oblinger M. M. (1987) Characterization of posttranslational processing of the mammalian high-molecular-weight neurofilament protein in vivo.Neuroscience 7, 2510–2521.PubMedGoogle Scholar
  32. Pachter J. S. and Liem R. K. (1984) The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve.Dev. Biol. 103, 200–210.PubMedCrossRefGoogle Scholar
  33. Romeu A., Alemany M., and Arola L. (1986) Net transfer of essential metals from mother to fetus in the second half of pregnancy in the rat.Biology of the Neonate 49, 204–210.PubMedGoogle Scholar
  34. Roy A. K., Talukder G., and Sharma A. (1991) Similar effects in vivo of two aluminum salts on the liver, kidney, bone, and brain of Rattus norvegicus.Bull. Environ. Contam. Toxicol. 47, 288–295.PubMedCrossRefGoogle Scholar
  35. Schlaepfer W. W. and Bruce J. (1990) Simultaneous up-regulation of neurofilament proteins during the postnatal development of the rat nervous system.Neurosci. Res. 25, 39–49.CrossRefGoogle Scholar
  36. Schmidt M. L., Murray J., Lee V. M.-Y., Hill W. D., Wertkin A., and Trojanowski J. W. (1991) Epitope map of neurofilament protein domains in cortical and peripheral nervous system Lewy bodies.Am. J. Pathol. 139, 53–65.PubMedGoogle Scholar
  37. Shaw G. (1991) Neurofilament proteins, inThe Neuronal Cytoskeleton (Burgoyne, R. D., ed.), pp. 185–214, Wiley-Liss, New York.Google Scholar
  38. Shaw G. and Weber K. (1982) Differential expression of neurofilament triplet proteins in brain development.Nature 298, 277–279.PubMedCrossRefGoogle Scholar
  39. Sturman J. A. and Wisniewski H. M. (1988) Aluminum, inMetal Neurotoxicity (Bondy S. C. and Prasad K. N., eds.), pp. 61–85, CRC, Boca Raton, FL.Google Scholar
  40. Willard M. and Simon C. (1983) Modulations of neurofilament azonal transport during the development of rabbit retinal ganglion cells.Cell 35, 551–559.PubMedCrossRefGoogle Scholar
  41. Yokel R. A. (1989) Aluminum produces age related behavioral toxicity in the rabbit.Neurotoxicol. Teratol. 11, 237–242.PubMedCrossRefGoogle Scholar
  42. Yokel R. A., Provan S. D., Meyer J. J., and Campbell S. R. (1988) Aluminum intoxication and the victim of Alzheimer’s disease: similarities and differences.Neuro Toxicology 9, 429–442.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • B. K. Poulos
    • 1
    • 2
    • 3
    • 4
  • M. Perazzolo
    • 2
    • 4
  • V. M. -Y. Lee
    • 5
  • R. Rudelli
    • 4
    • 6
  • H. M. Wisniewski
    • 1
    • 2
    • 4
    • 6
  • D. Soifer
    • 1
    • 2
    • 3
    • 4
  1. 1.CSI/IBR Center for Developmental NeuroscienceStaten Island
  2. 2.Center for Trace Metal Studies and Environmental NeurotoxicologyStaten Island
  3. 3.CUNY Doctoral Program in BiologyStaten Island
  4. 4.NYS Institute for Basic Research in Developmental DisabilitiesStaten Island
  5. 5.University of PennsylvaniaPhiladelphia
  6. 6.CCLStaten Island

Personalised recommendations