Advertisement

Molecular and Chemical Neuropathology

, Volume 33, Issue 3, pp 223–236 | Cite as

Mechanisms of hippocampal reoxygenation injury

  • L’ubica Horáková
  • Svorad Štolc
  • Zdena Chromíková
  • Andrea Pekárová
  • L’ubica Derková
Original Articles

Abstract

Mechanisms of 12 min of hypoxia and subsequent reoxygenation were studied in rat hippocampal slices. General cell injury in reoxygenation was indicated by increased lactate dehydrogenase (LDH). Increase in conjugated dienes (CD) showed that oxygen radical burst induced lipid peroxidation (LPO). ATP increase was also involved in reoxygenation injury, since cyanide, an inhibitor of ATP synthesis, decreased this damage. The results obtained on using inhibitors of oxygen radicals generation, i.e., allopurinol, indomethacin, rotenone, and antimycin A, strongly suggest that the sources of oxygen radicals were the xanthine/xanthine oxidase system, prostaglandin synthesis, and mitochondrial respiratory chain. The involvement of oxygen radicals in oxidative stress was confirmed also by using chain-breaking antioxidants, trolox α-tocopherol and stobadine, [(-)-cis-2,8-dimethyl-2,3,4,4a,5,9b-hexahydro-1H-pyrido (4,3b)indole]. Stobadine added at the onset of reoxygenation was most effective, acting in a dose-dependent manner and found to be without effect when applied in hypoxia. Cytochrome-c oxidase was decreased in reoxygenated hippocampal slices treated with stobadine.

Index Entries

Hippocampus hypoxia-reoxygenation injury oxidative stress antioxidants trolox α-tocopherol stobadine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akai F. and Yanagihara T. (1993) Identity of the dorsal hippocampal region most vulnerable to cerebral ischemia.Brain Res. 603, 87–95.PubMedCrossRefGoogle Scholar
  2. Ando S., Waki H., and Kon K. (1993) Differential fatty acid release from CA1 and CA3 regions of rat hippocampal slices under hypoxia and hypoglycemia.Neurosci. Lett. 151, 48–50.PubMedCrossRefGoogle Scholar
  3. Beneš L. and Ŝtolc S. (1989) Stobadine.Drugs Future 14, 135–137.Google Scholar
  4. Boveris A. and Chance B. (1973) The mitochondrial generation of hydrogen peroxide.Biochem. J. 134, 707–716.PubMedGoogle Scholar
  5. Braughler J. M. and Hall E. D. (1989) Central nervous system trauma and stroke I. Biochemical consideration for oxygen radical formation and lipid peroxidation.Free Radical Biol. Med. 6, 289–301.CrossRefGoogle Scholar
  6. Cadenas E., Boveris A., Ragan I., and Stoppani A. O. M. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-Ubiquinone reductase and Ubiquinol-cytochrome c reductase from beef-heart mitochondria.Arch. Biochem. Biophys. 180, 248–257.PubMedCrossRefGoogle Scholar
  7. Clemens J. A. and Panetta J. A. (1995) Free radicals in central nervous system diseases, inImmunopharmacology of Free Radical Species (Blake D. and Winyard P. G., eds.), pp. 73–83, Academic, London.Google Scholar
  8. Clinch A. K., Vincenzi F. F., Rohn T. T., and Hinds T. R. (1993) Stobadine protects ion pump ATPases from free radical inhibition.Proc. West. Pharmacol. Soc. 36, 209–214.PubMedGoogle Scholar
  9. de Groot H., Littauer A., and Noll T. (1988) Metabolic and pathological aspects of hypoxia in liver cells, inOxygen Sensing in Tissues (Acker H., ed.), pp. 49–64, Heidelberg, Springer Verlag.Google Scholar
  10. de Groot H. and Brecht M. (1991) Reoxygenation injury in rat hepatocytes: Mediation by ·O2/H2O2 liberated by sources other than xanthine oxidase.Biol. Chem. Hoppe-Seyler 372, 35–41.PubMedGoogle Scholar
  11. de Groot H. and Littauer A. (1989) Hypoxia, reactive oxygen and cell injury.Free Radical Biol. Med. 6, 541–551.CrossRefGoogle Scholar
  12. de Groot H. and Noll T. (1987) The role of physiological oxygen partial pressures in lipid peroxidation. Theoretical considerations and experimental evidence.Chem. Phys. Lipids 44, 209–226.PubMedCrossRefGoogle Scholar
  13. Ganote C. E., Worstell J., and Kaltenbach J. P. (1976) Oxygen induced enzyme release after irreversible myocardial injury. Effects of cyanide in perfused rat hearts.Am. J. Pathol. 84, 327–350.PubMedGoogle Scholar
  14. Gibson S. L. and Hilf R. (1983) Photosensitization of mitochondrial cytochrome oxidase by hematoporphyrin derivative and related porphyrins in vitro and in vivo.Cancer Res. 43, 4191–4197.PubMedGoogle Scholar
  15. Hochachka P. W. (1986) Defence strategies against hypoxia and hypotermia.Science 231, 234–241.PubMedCrossRefGoogle Scholar
  16. Horáková L’., Sies H., and Steenken S. (1994) Antioxidant action of stobadine, inMethods in Enzymology, vol. 234 (Packer L., ed.), pp. 572–580, Academic, San Diego.Google Scholar
  17. Hummerich H., de Groot H., Noll T., and Soboll S. (1988) Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes.Biochem. J. 250, 641–645.PubMedGoogle Scholar
  18. Kehrer J. P., Park Y., and Sies H. (1988) Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue.J. Appl. Physiol. 65, 1855–1860.PubMedGoogle Scholar
  19. Kjellmer I. (1991) Mechanisms of perinatal brain damage (Review).Ann. Med. 23 (6), 675–679.PubMedGoogle Scholar
  20. Kvaltínová Z. and Štolc S. (1994) Decrease of the density of NMDA binding sites in rat hippocampal slices under oxidative stress: Pharmacological analysis.Can. J. Physiol. Pharmacol. 72 (Suppl. 1), 432.Google Scholar
  21. Kvaltínová Z. and Štolc S. (1995) NMDA binding sites in rat hippocampus under oxidative stress: Effects of antioxidants and NMDA antagonists, inReceptor Classification Abstracts, Verona, Italy, 32.Google Scholar
  22. Kvaltínová Z. and Štolc S. (1997) NMDA binding sites in rat hippocampus under oxidative stress: Effect of antioxidants and NMDA antagonists.Ann. NY Acad. Sci. 812, 240–242.CrossRefGoogle Scholar
  23. Lamesch P., Ringe B., Blumhardt G., and Pichlmayr R. (1989) Effect of xanthine oxidase inhibition on warm ischemic lesions of the liver.Transplant. Proc. 21, 1285, 1286.PubMedGoogle Scholar
  24. McCord J. M. (1985) Oxygen derived free radicals in post-ischemic tissue injury.N. Engl. J. Med. 312, 159–163.PubMedCrossRefGoogle Scholar
  25. McCord J. M. and Fridovich I. (1969) Superoxide dismutase, an enzymic function for erythrocroprein (hemocroprein).J. Biol. Chem. 244, 6049–6055.PubMedGoogle Scholar
  26. Mišík V., Gergel’ D., and Ondriaš K. (1991) Comparison of the effect of stobadine on lipid peroxidation of liver heart kidney and brain homogenates.Pharmazie 46, 468, 469.PubMedGoogle Scholar
  27. Ondriaš K., Mišík V., Gergel’ D., and Staško A. (1989) Lipid peroxidation of phosphatidylchline liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrhythmic-antihypoxic drug stobadine.Biochim. Biophys. Acta 1003, 238–245.PubMedGoogle Scholar
  28. Paraidathathu T., de Groot H., and Kehrer J. P. (1992) Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue.Free Radical Biol. Med. 13, 289–297.CrossRefGoogle Scholar
  29. Račay P., Kaplán P., Lehotský J., and Mézešová V. (1995) Rabbit brain endoplasmic reticulum membranes as target for free radicals. Changes in Ca2+-transport and protection by stobadine.Biochem. Mol. Biol. Int. 36, 569–577.PubMedGoogle Scholar
  30. Ramasarma T. (1982) Generation of H2O2 in biomembranes.Biochim. Biophys. Acta 694, 69–93.PubMedGoogle Scholar
  31. Rohn T. T., Hinds T. R., and Vincenzi F. F. (1993) Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes.Biochem. Pharmacol. 46, 525–534.PubMedCrossRefGoogle Scholar
  32. Rouser G., Fleisher S., and Yamamoto A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.Lipids 5, 494–496.PubMedCrossRefGoogle Scholar
  33. Schurr A. and Rigor B. M. (1987) The hippocampal preparation in the study of brain protection against hypoxia, inBrain Slices: Fundamentals, Application and Implication (Schurr A., Teyler T. J., and Tseng M. T., eds.), pp. 129–142, Kargel, Basel.Google Scholar
  34. Štefek M., Masaryková M., and Beneš L. (1992) Inhibition of cumene hydroperoxide-induced lipid peroxidation by novel pyridoindole antioxidant in rat liver microsomes.Pharmacol. Toxicol. 70, 407–411.PubMedGoogle Scholar
  35. Štolc S. and Selecká J. (1995) Protective effect of stobadine, a pyridoindole antioxidant, in hypoxia-reoxygenation injury of ganglionic and hippocampal neurotransmission.Mol. Chem. Neuropathol. 25, 199–212.PubMedCrossRefGoogle Scholar
  36. Štolc S., Bauer V., Beneš L., and Tichý L. (1983, 1985) Medicine with antiarrhythmic and antihypoxic activity and method of its preparation. CS Patent 229 067, Swiss Patent 651 754.Google Scholar
  37. Štolc S., Vlkolinský R., and Pavlásek J. (1997) Neuroprotection by the pyridoindole stobadine.Brain Res. Bull. 42, 335–340.PubMedCrossRefGoogle Scholar
  38. Teyler J. T. (1980) Brain slice preparation.Brain Res. Bull. 5, 391–403.PubMedCrossRefGoogle Scholar
  39. Yoshida A. and Freese E. (1975) Lactate dehydrogenase from Bacillus subtilis, inMethods in Enzymology, vol. 61 (Wood W. A., ed.), pp. 304–309, Academic, New York.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • L’ubica Horáková
    • 1
  • Svorad Štolc
    • 1
  • Zdena Chromíková
    • 1
  • Andrea Pekárová
    • 1
  • L’ubica Derková
    • 1
  1. 1.Institute of Experimental PharmacologySlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations