Synaptosomal iron-dependent lipid peroxidation inhibition after subarachnoid hemorrhage by lazaroid in vivo treatment

  • Carla Torri
  • Carla Café
  • Daniela Adinolfi
  • Paolo Gaetani
  • Riccardo Rodriguez y Baena
  • Fulvio Marzatico
Original Articles


The production of oxygen-free radicals and their subsequent peroxidative action on membrane unsaturated fatty acids could be enhanced after subarachnoid hemorrhage (SAH). We have studied the effects of the in vivo pharmacological treatment with a lazaroid (U78517F) after experimental SAH, on lipid peroxidative patterns in cortical synaptosomal preparations. U78517F is a lipid-soluble antioxidant with a potent action to inhibit iron-dependent lipid peroxidation. Experimental SAH was induced in anesthetized rats by slow injection of 0.3 mL of autologous arterial blood into cisterna magna. The hemorrhagic animals were treated with 5 mg/kg iv of U78517F immediately after surgical operation. The animals were sacrificed 1 d after the hemorrhage and the thiobarbituric acid reactive material (TBAR) was assayed in basal conditions and after 1, 3, 5, 10, and 20 min of incubation at 37°C with a pro-oxidant mixture on three different rat groups: sham-operated (0.3 mL of mock cerebrospinal fluid (CSF) into cis-terna magna), hemorrhagic (0.3 mL of autologous arterial blood into cisterna magna), and hemorrhagic-treated. The hemorrhagic event did not influence the membrane lipoperoxidation levels in basal conditions, whereas peroxidative stimulation in vitro caused significant increases in hemorrhagic animals compared to the sham-operated, and in hemorrhagic-treated animals, the synaptosomal TBARs were similar to controls. The pharmacological treatment showed its effectiveness only following incubations with pro-oxidants; therefore, U78517F seems to be protective for membranes in case of severe lipid peroxidative stress.

Index Entries

Subarachnoid hemorrhage lipid peroxidation TBARs lazaroid free radicals antioxidant 21-aminosteroid oxygen radicals hydroxyl radical 


  1. Abe K., Yoshidomi M., and Kogure K. (1989) Arachidonic acid metabolism in ischemic neuronal damage.Ann. NY Acad. Sci. 559, 259–268.PubMedCrossRefGoogle Scholar
  2. Althaus J. S., Williams C. W., Andrus P. K., Yonkers P. A., Fici G. J., Hall E. D., and Von Voigtlander P. E. (1991) In vitro and in vivo analysis of tirilazad mesylate (U74006F) as a hydroxyl radical scavenger.Soc. Neurosci. Abstract 17, 164–175.Google Scholar
  3. Asano T., Matsui T., and Takuwa Y. (1991) Lipid peroxidation, protein kinase C and cerebral vasospasm.Crit. Rev. Neurosurg. 1, 361–379.Google Scholar
  4. Audus K. L., Guillot F. L., and Braughler J. M. (1991) Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells.Free Radical Biol. Med. 11, 361–371.CrossRefGoogle Scholar
  5. Braughler J. M. and Hall E. D. (1989) Central nervous system trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation.Free Radical Biol. Med. 6, 289–301.CrossRefGoogle Scholar
  6. Braughler J. M. and Pregenzer J. F. (1989) The 21-aminosteroid inhibitors of lipid peroxidation: Reactions with lipid peroxil and phenoxyl radicals.Free Radical Biol. Med. 7, 125–130.CrossRefGoogle Scholar
  7. Braughler J. M., Pregenzer J. F., Chase R. L., Duncan L. A., Jacobsen E. J., and McCall J. M., (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem. 262, 10438–10440.PubMedGoogle Scholar
  8. Braughler J. M., Hall E. D., Jacobsen E. J., McCall J. M., and Means E. D. (1989) The 21-aminosteroids: potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia.Drugs Future 14, 143–152.Google Scholar
  9. Chan P. H. and Fishman R. A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid induced brain swelling.J. Neurochem. 35, 1004–1007.PubMedCrossRefGoogle Scholar
  10. Cohen G. (1988) Oxygen radicals and Parkinson’s disease, inOxygen Radicals and Tissue Injury (Halliwell B., ed.) FASEB, Bethesda, MD, pp. 130–135.Google Scholar
  11. Dagani F. and Erecinska M. (1987) Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes.J. Neurochem. 49, 1229–1240.PubMedCrossRefGoogle Scholar
  12. Delgado T. J., Brismar J., and Svengaard N. A. (1985) Subarachnoid hemorrhage in the rat: Angiography and fluorescence microscopy of the major arteries.Stroke 16, 595–602.PubMedGoogle Scholar
  13. Fiske C. H. and Subbarow Y. (1925) The colorimetric determination of phosphorus.J. Biol. Chem. 66, 375–400.Google Scholar
  14. Gaetani P., Marzatico F., Lombardi D., Adinolfi D., and Rodriguez y Baena R. (1991) Effect of high-dose methylprednisolone and U74006F on eicosanoid synthesis after subarachnoid hemorrhage in rats.Stroke 22, 215–220.PubMedGoogle Scholar
  15. Grotta J. C., Pettigrew L. C., Lockwood A. H., and Reich C. (1987) Brain extraction of a calcium channel blocker.Ann. Neurol. 21, 171–175.PubMedCrossRefGoogle Scholar
  16. Hall E. D. and Braughler J. M. (1993) Free radicals in CNS injury, inMolecular and Cellular Approaches to the Treatment of Neurological Disease (Waxman, S. G., ed.) Raven, New York, pp. 81–105.Google Scholar
  17. Hall E. D., Pazara K. E., and Braughler J. M. (1988) The 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils.Stroke 19, 997–1002.PubMedGoogle Scholar
  18. Hall E. D., Pazara K. E., Braughler J. M., Linseman K. L., and Jacobsen E. J. (1990) Nonsteroidal lazaroid U78517F in models of focal and global ischemia.Stroke 21 (Suppl. III), 83–87.Google Scholar
  19. Halliwell B. (1978) Biochemical mechanisms accounding for the action of oxygen of living organisms: the key role of superoxide dismutase.Cell Biol. Int. Rep. 2, 113–128.PubMedCrossRefGoogle Scholar
  20. Halliwell B. and Gutteridge J. M. C. (1985) Oxygen radicals and nervous system.Trends Neurosci. 8, 22–26.CrossRefGoogle Scholar
  21. Halliwell B. and Gutteridge J. M. C. (1990) Role of free radicals and catalytic metal ions in human disease: an overview.Methods Enzymol. 186, 1–85.PubMedGoogle Scholar
  22. Harris M. E., Hensley K., Butterfield D. A., Leedle R. A., and Carney J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultered hippocampal neurons.Exp. Neurol. 131, 193–202.PubMedCrossRefGoogle Scholar
  23. Huschmann O. R. and Nathanson D. C. (1985) The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid hemorrhage.J. Neurosurg. 62, 698–703.Google Scholar
  24. Jackowski A., Crockard H. A., Ross Russell R. W., and Burnstock G. (1989) SAH in a rat model: the time course of change in cerebral blood flow, cerebral perfusion, and intracranial pressure.J. Cereb. Blood Flow Metab. 9 (Suppl. 1), S455.Google Scholar
  25. Kanamaru K., Weir B. K. A., Simpson I., Witbeck T., and Grace M. (1991) Effect of 21-aminosteroid U-74006F on lipid peroxidation in subarachnoid clot.J. Neurosurg. 74, 454–459.PubMedGoogle Scholar
  26. Kontos H. A. and Povlishock J. T. (1986) Oxygen radicals in brain injury.CNS Trauma 3, 257–263.Google Scholar
  27. LeBel C. P. and Bondy S. C. (1991) Oxygen radicals: common mediators of neurotoxicity.Neurotoxicol. Teratol. 13, 341–346.PubMedCrossRefGoogle Scholar
  28. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  29. Marzatico F., Gaetani P., Rodriguez y Baena R., Silvani V., Paoletti P., and Benzi C. (1988) Bioenergetics of different brain areas after experimental subarachnoid hemorrhage in rats.Stroke 19, 378–384.PubMedGoogle Scholar
  30. Marzatico F., Gaetani P., Rodriguez y Baena R., Silvani V., Fulle I., Lombardi D., Ferlenga P., and Benzi G. (1989) Experimental subarachnoid hemorrhage: lipid peroxidation and Na+, K+-ATPase in different rat brain areas.Mol. Chem. Neuropathol. 11, 99–107.PubMedCrossRefGoogle Scholar
  31. Marzatico F., Gaetani P., Silvani V., Lombardi D., Sinforiani E., and Rodriguez y Baena R. (1990) Experimental isobaric subarachnoid hemorrhage: regional mitochondrial function during the acute and late phase.Surg. Neurol. 34, 294–300.PubMedCrossRefGoogle Scholar
  32. McIntosh T., Banbury M., and Smith D. (1991) The novel 21-aminosteroid U74006F attentuates cerebral oedema and improves survival after brain injury in the rat.Acta Neurochir. 51 (Suppl.), 329–330.Google Scholar
  33. Ohkawa H., Ohishi N., and Yagi K. (1951) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction.Anal. Biochem. 95, 351–358.CrossRefGoogle Scholar
  34. Sano K., Asano T., Tanishima T., and Sasaki T. (1980) Lipid peroxidation as a cause of cerebral vasospasm.Neurol. Res. 2, 253–272.PubMedGoogle Scholar
  35. Siesjo B. K. (1981) Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow Metab. 1, 155–185.PubMedGoogle Scholar
  36. Siesjo B. K., Agardh C. D., and Bengtsson F. (1989) Free radicals and brain damage.Cerebrovasc. Brain Metab. Rev. 1, 165–211.PubMedGoogle Scholar
  37. Solomon R. A., Lobo Antunes J., Chen R. Y. Z., Bland L., and Chien S. (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: A new model.Stroke 16, 58–64.PubMedGoogle Scholar
  38. Tappel A. L. (1974) Lipid peroxidation damage to cell components.Fed. Proc. 32, 1870–1874.Google Scholar
  39. Traystman R. J., Kirsch J. R., and Koehler R. C. (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion.J. Appl. Physiol. 71, 1185–1195.PubMedGoogle Scholar
  40. Volby B., Enevoldsen E. M., and Jensen F. T. (1985) Regional CBF, intraventricular pressure and cerebral metabolism in patients with rupture intracranial aneurysms.Biochem. J. 146, 713–722.Google Scholar
  41. Watson B. D. and Ginsberg M. D. (1989) Ischemi injury in the brain. Role of oxygen radical-mediated processes.Ann. NY Acad. Sci. 559, 269–281.PubMedCrossRefGoogle Scholar
  42. Youdim M. B. H. and Ben-Schachar D. (1990) The neurotoxic component in Parkinson’s disease may involve iron-melanin interaction and lipid peroxidation in the substantia nigra.N. Vistas Drug Res. 1, 111–122.Google Scholar
  43. Zuccarello M., Marsch J. T., Schmitt G., Woodward J., and Anderson D. K. (1989) Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage.J. Neurosurg. 71, 98–104.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Carla Torri
    • 1
  • Carla Café
    • 1
  • Daniela Adinolfi
    • 2
  • Paolo Gaetani
    • 2
  • Riccardo Rodriguez y Baena
    • 2
  • Fulvio Marzatico
    • 1
  1. 1.Institute of PharmacologyUniversity of PaviaPaviaItaly
  2. 2.Department of Surgery, NeurosurgeryIRCCS Policlinico S. MatteoPaviaItaly

Personalised recommendations