Skip to main content
Log in

Synaptosomal iron-dependent lipid peroxidation inhibition after subarachnoid hemorrhage by lazaroid in vivo treatment

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The production of oxygen-free radicals and their subsequent peroxidative action on membrane unsaturated fatty acids could be enhanced after subarachnoid hemorrhage (SAH). We have studied the effects of the in vivo pharmacological treatment with a lazaroid (U78517F) after experimental SAH, on lipid peroxidative patterns in cortical synaptosomal preparations. U78517F is a lipid-soluble antioxidant with a potent action to inhibit iron-dependent lipid peroxidation. Experimental SAH was induced in anesthetized rats by slow injection of 0.3 mL of autologous arterial blood into cisterna magna. The hemorrhagic animals were treated with 5 mg/kg iv of U78517F immediately after surgical operation. The animals were sacrificed 1 d after the hemorrhage and the thiobarbituric acid reactive material (TBAR) was assayed in basal conditions and after 1, 3, 5, 10, and 20 min of incubation at 37°C with a pro-oxidant mixture on three different rat groups: sham-operated (0.3 mL of mock cerebrospinal fluid (CSF) into cis-terna magna), hemorrhagic (0.3 mL of autologous arterial blood into cisterna magna), and hemorrhagic-treated. The hemorrhagic event did not influence the membrane lipoperoxidation levels in basal conditions, whereas peroxidative stimulation in vitro caused significant increases in hemorrhagic animals compared to the sham-operated, and in hemorrhagic-treated animals, the synaptosomal TBARs were similar to controls. The pharmacological treatment showed its effectiveness only following incubations with pro-oxidants; therefore, U78517F seems to be protective for membranes in case of severe lipid peroxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K., Yoshidomi M., and Kogure K. (1989) Arachidonic acid metabolism in ischemic neuronal damage.Ann. NY Acad. Sci. 559, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Althaus J. S., Williams C. W., Andrus P. K., Yonkers P. A., Fici G. J., Hall E. D., and Von Voigtlander P. E. (1991) In vitro and in vivo analysis of tirilazad mesylate (U74006F) as a hydroxyl radical scavenger.Soc. Neurosci. Abstract 17, 164–175.

    Google Scholar 

  • Asano T., Matsui T., and Takuwa Y. (1991) Lipid peroxidation, protein kinase C and cerebral vasospasm.Crit. Rev. Neurosurg. 1, 361–379.

    Google Scholar 

  • Audus K. L., Guillot F. L., and Braughler J. M. (1991) Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells.Free Radical Biol. Med. 11, 361–371.

    Article  CAS  Google Scholar 

  • Braughler J. M. and Hall E. D. (1989) Central nervous system trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation.Free Radical Biol. Med. 6, 289–301.

    Article  CAS  Google Scholar 

  • Braughler J. M. and Pregenzer J. F. (1989) The 21-aminosteroid inhibitors of lipid peroxidation: Reactions with lipid peroxil and phenoxyl radicals.Free Radical Biol. Med. 7, 125–130.

    Article  CAS  Google Scholar 

  • Braughler J. M., Pregenzer J. F., Chase R. L., Duncan L. A., Jacobsen E. J., and McCall J. M., (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem. 262, 10438–10440.

    PubMed  CAS  Google Scholar 

  • Braughler J. M., Hall E. D., Jacobsen E. J., McCall J. M., and Means E. D. (1989) The 21-aminosteroids: potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia.Drugs Future 14, 143–152.

    Google Scholar 

  • Chan P. H. and Fishman R. A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid induced brain swelling.J. Neurochem. 35, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G. (1988) Oxygen radicals and Parkinson’s disease, inOxygen Radicals and Tissue Injury (Halliwell B., ed.) FASEB, Bethesda, MD, pp. 130–135.

    Google Scholar 

  • Dagani F. and Erecinska M. (1987) Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes.J. Neurochem. 49, 1229–1240.

    Article  PubMed  CAS  Google Scholar 

  • Delgado T. J., Brismar J., and Svengaard N. A. (1985) Subarachnoid hemorrhage in the rat: Angiography and fluorescence microscopy of the major arteries.Stroke 16, 595–602.

    PubMed  CAS  Google Scholar 

  • Fiske C. H. and Subbarow Y. (1925) The colorimetric determination of phosphorus.J. Biol. Chem. 66, 375–400.

    CAS  Google Scholar 

  • Gaetani P., Marzatico F., Lombardi D., Adinolfi D., and Rodriguez y Baena R. (1991) Effect of high-dose methylprednisolone and U74006F on eicosanoid synthesis after subarachnoid hemorrhage in rats.Stroke 22, 215–220.

    PubMed  CAS  Google Scholar 

  • Grotta J. C., Pettigrew L. C., Lockwood A. H., and Reich C. (1987) Brain extraction of a calcium channel blocker.Ann. Neurol. 21, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Hall E. D. and Braughler J. M. (1993) Free radicals in CNS injury, inMolecular and Cellular Approaches to the Treatment of Neurological Disease (Waxman, S. G., ed.) Raven, New York, pp. 81–105.

    Google Scholar 

  • Hall E. D., Pazara K. E., and Braughler J. M. (1988) The 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils.Stroke 19, 997–1002.

    PubMed  CAS  Google Scholar 

  • Hall E. D., Pazara K. E., Braughler J. M., Linseman K. L., and Jacobsen E. J. (1990) Nonsteroidal lazaroid U78517F in models of focal and global ischemia.Stroke 21 (Suppl. III), 83–87.

    Google Scholar 

  • Halliwell B. (1978) Biochemical mechanisms accounding for the action of oxygen of living organisms: the key role of superoxide dismutase.Cell Biol. Int. Rep. 2, 113–128.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (1985) Oxygen radicals and nervous system.Trends Neurosci. 8, 22–26.

    Article  CAS  Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (1990) Role of free radicals and catalytic metal ions in human disease: an overview.Methods Enzymol. 186, 1–85.

    PubMed  CAS  Google Scholar 

  • Harris M. E., Hensley K., Butterfield D. A., Leedle R. A., and Carney J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultered hippocampal neurons.Exp. Neurol. 131, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Huschmann O. R. and Nathanson D. C. (1985) The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid hemorrhage.J. Neurosurg. 62, 698–703.

    Google Scholar 

  • Jackowski A., Crockard H. A., Ross Russell R. W., and Burnstock G. (1989) SAH in a rat model: the time course of change in cerebral blood flow, cerebral perfusion, and intracranial pressure.J. Cereb. Blood Flow Metab. 9 (Suppl. 1), S455.

    Google Scholar 

  • Kanamaru K., Weir B. K. A., Simpson I., Witbeck T., and Grace M. (1991) Effect of 21-aminosteroid U-74006F on lipid peroxidation in subarachnoid clot.J. Neurosurg. 74, 454–459.

    PubMed  CAS  Google Scholar 

  • Kontos H. A. and Povlishock J. T. (1986) Oxygen radicals in brain injury.CNS Trauma 3, 257–263.

    CAS  Google Scholar 

  • LeBel C. P. and Bondy S. C. (1991) Oxygen radicals: common mediators of neurotoxicity.Neurotoxicol. Teratol. 13, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Marzatico F., Gaetani P., Rodriguez y Baena R., Silvani V., Paoletti P., and Benzi C. (1988) Bioenergetics of different brain areas after experimental subarachnoid hemorrhage in rats.Stroke 19, 378–384.

    PubMed  CAS  Google Scholar 

  • Marzatico F., Gaetani P., Rodriguez y Baena R., Silvani V., Fulle I., Lombardi D., Ferlenga P., and Benzi G. (1989) Experimental subarachnoid hemorrhage: lipid peroxidation and Na+, K+-ATPase in different rat brain areas.Mol. Chem. Neuropathol. 11, 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Marzatico F., Gaetani P., Silvani V., Lombardi D., Sinforiani E., and Rodriguez y Baena R. (1990) Experimental isobaric subarachnoid hemorrhage: regional mitochondrial function during the acute and late phase.Surg. Neurol. 34, 294–300.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T., Banbury M., and Smith D. (1991) The novel 21-aminosteroid U74006F attentuates cerebral oedema and improves survival after brain injury in the rat.Acta Neurochir. 51 (Suppl.), 329–330.

    Google Scholar 

  • Ohkawa H., Ohishi N., and Yagi K. (1951) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction.Anal. Biochem. 95, 351–358.

    Article  Google Scholar 

  • Sano K., Asano T., Tanishima T., and Sasaki T. (1980) Lipid peroxidation as a cause of cerebral vasospasm.Neurol. Res. 2, 253–272.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1981) Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow Metab. 1, 155–185.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K., Agardh C. D., and Bengtsson F. (1989) Free radicals and brain damage.Cerebrovasc. Brain Metab. Rev. 1, 165–211.

    PubMed  CAS  Google Scholar 

  • Solomon R. A., Lobo Antunes J., Chen R. Y. Z., Bland L., and Chien S. (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: A new model.Stroke 16, 58–64.

    PubMed  CAS  Google Scholar 

  • Tappel A. L. (1974) Lipid peroxidation damage to cell components.Fed. Proc. 32, 1870–1874.

    Google Scholar 

  • Traystman R. J., Kirsch J. R., and Koehler R. C. (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion.J. Appl. Physiol. 71, 1185–1195.

    PubMed  CAS  Google Scholar 

  • Volby B., Enevoldsen E. M., and Jensen F. T. (1985) Regional CBF, intraventricular pressure and cerebral metabolism in patients with rupture intracranial aneurysms.Biochem. J. 146, 713–722.

    Google Scholar 

  • Watson B. D. and Ginsberg M. D. (1989) Ischemi injury in the brain. Role of oxygen radical-mediated processes.Ann. NY Acad. Sci. 559, 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Youdim M. B. H. and Ben-Schachar D. (1990) The neurotoxic component in Parkinson’s disease may involve iron-melanin interaction and lipid peroxidation in the substantia nigra.N. Vistas Drug Res. 1, 111–122.

    Google Scholar 

  • Zuccarello M., Marsch J. T., Schmitt G., Woodward J., and Anderson D. K. (1989) Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage.J. Neurosurg. 71, 98–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torri, C., Café, C., Adinolfi, D. et al. Synaptosomal iron-dependent lipid peroxidation inhibition after subarachnoid hemorrhage by lazaroid in vivo treatment. Molecular and Chemical Neuropathology 30, 15–24 (1997). https://doi.org/10.1007/BF02815147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815147

Index Entries

Navigation