Molecular and Chemical Neuropathology

, Volume 35, Issue 1–3, pp 61–76 | Cite as

Regional changes of membrane phospholipid concentrations in rabbit spinal cord following brief repeated ischemic insults

Original Articles


Changes in the concentration of membrane-bound phospholipids following single (25-min) spinal cord ischemia and 3 h or reperfusion were determined. These were compared with the changes following brief repeated (8-, 8-, and 9-min) ischemia followed each time by reperfusion for 1h, or the same periods of ischemia followed by 8h, 8h, and 24h of reperfusion, respectively. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and sphingomyelin (SM) were assayed in regions of the spinal cord of the rabbit, including gray matter, white matter, dorsal horns, intermediate zone, and ventral horns. The brief repeated ischemia with 1-h reperfusions produced more extensive degradation of phospholipids in almost all regions compared with the equivalent time of ischemia (25 min) in a single period. After a lengthy reperfusion after repeated ischemia, the phospholipids were resynthesized with the exception of the phosphatidylinositol in the gray matter. The resynthesis was most pronounced in the dorsal horns and in the white matter.

Index Entries

Brief repeated ischemia phospholipids spinal cord regions rabbit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K., Kogure K., Yamamoto H., Imazawa M., and Miyamoto K. (1987) Mechanism of arachidonic acid liberation during ischemia in gerbil cortex.J. Neurochem. 48, 503–509.PubMedCrossRefGoogle Scholar
  2. Araki T., Kato H., Inoue T., and Kogure K. (1990) regional impairment of protein synthesis following brief cerebral ischemia in the gerbil.Acta Neuropathol. 79, 501–505.PubMedCrossRefGoogle Scholar
  3. Bazán N. G., Pascual de Bazán H. E., Kennedy W. G., and Joel C. D. (1971) Regional distribution and rate of production of free fatty acids in rat brain.J. Neurochem. 18, 233–239.CrossRefGoogle Scholar
  4. Bazán N. G., Allan G., and Rodriguez de Turco E. B. (1993) Role of phospholipase A2 and membrane-derived lipid second messengers in excitable membrane function and transcriptional activation of genes: Implications in cerebral ischemia and neuronal excitability.Prog. Brain Res. 96, 247–257.PubMedGoogle Scholar
  5. Block E. R., Patel J. M., and Edwards D. (1989) Mechanism of hypoxia injury to pulmonary artery endothelial cell plasma membranes.Am. J. Physiol. (Cell Physiol.) 26:C, 223–231.Google Scholar
  6. Blot S., Arnal J. F., Xu Y., Gray F., and Michel J. B. (1994) Spinal cord infarcts during longterm inhibition of nitric oxide synthase in rats.Stroke 25, 1666–1673.PubMedGoogle Scholar
  7. Bradford M. M. (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  8. Bradová V. and Ŝmid F. (1990) Improved one-dimensional thin-layer chromatography for the separation of phospholipids in biological material.J. Chromatogr. 533, 297–299.PubMedCrossRefGoogle Scholar
  9. Cao W., Carney J. M., Duchon A., Floyd R. A., and Chevion M. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain.Neurosci. Lett. 88, 233–238.PubMedCrossRefGoogle Scholar
  10. Choi D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage.Trends Neurosci. 11, 465–469.PubMedCrossRefGoogle Scholar
  11. Crosby G., Russo M. A., Szabo M. D., and Davies K. R. (1990) Subarachnoid Clonidine reduces spinal cord blood flow and glucose utilization in conscious rats.Anesthesiology 73, 1179–1185.PubMedCrossRefGoogle Scholar
  12. Dawson T. M., Zhang J., Dawson V. L., and Snyder S. H. (1994) Nitric oxide: cellular regulation and neuronal injury.Prog. Brain Res. 103, 365–369.PubMedGoogle Scholar
  13. del Rio-Hortega P. (1932) Microglia, inCytology and Cellular Pathology of the Nervous System (Penfield W., ed.), pp. 481–584, Paul P. Hocker, New York.Google Scholar
  14. DeMedio G. E., Goracci G., Horrocks L. A., Lazarewicz, J. W., Mazzari S., Porcellati G., et al. (1980) The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain.Ital. J. Biochem. 29, 412–432.Google Scholar
  15. Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks, L. A. (1985a) Membrane lipid changes in laminectomized and traumatized cat spinal cord.Proc. Natl. Acad. Sci. USA 82, 7071–7075.PubMedCrossRefGoogle Scholar
  16. Demediuk P., Saunders R. D., Clendenon N. R., Means E. D., Anderson D. A., and Horrocks L. A. (1985b) Changes in lipid metabolism in traumatized spinal cord, inProgress in Brain Research vol. 63 (Kogure K., Hossman K. A., Siesjö B. K., and Welsh F. A., eds.), pp. 211–226, Elsevier, Amsterdam.Google Scholar
  17. Dorman R. V., Dabrowiecki Z., and Horrocks L. A. (1983) Effect of CDP choline and CDP ethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia.J. Neurochem. 40, 276–279.PubMedCrossRefGoogle Scholar
  18. Dun N. J., Dun S. L., Wu S. Y., Forstermann U., Schmidt H. H. H. W., and Tseng L. F. (1993) Nitric oxide synthase immunoreactivity in the rat, mouse, cat and squirrel monkey spinal cord.Neuroscience 54, 845–857.PubMedCrossRefGoogle Scholar
  19. Edgar A. D., Strosznajder J., and Horrocks L. A. (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia.J. Neurochem. 39, 1111–1116.PubMedCrossRefGoogle Scholar
  20. Farber H. W. and Barnett H. F. (1991) Differences in prostaglandin metabolism in cultured aortic and pulmonary arterial endothelial cells exposed to acute and chronic hypoxia.Circ. Res. 68, 1446–1457.PubMedGoogle Scholar
  21. Folch L., Lees M., and Sloane Stanley G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues.J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  22. Francescangeli E., Goracci G., Piccinin G. L., Mozzi R., Woelk H., and Porcellati G. (1977) The metabolism of labelled choline in neuronal and glial cells of the rabbit in vivo.J. Neurochem. 28, 171–176.PubMedCrossRefGoogle Scholar
  23. Garcia J. H., Cox J. V., and Hudgins W. R. (1971) Ultrastructure of the microvasculature in experimental cerebral infarction.Arch. Neuropathol. (Berl.) 18, 273–285.CrossRefGoogle Scholar
  24. Garcia J. H., Kalimo H., and Kamijyo Y. (1977) Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle cerebral artery occlusion.Virchows Arch. (Cell Pathol.) 25, 191–206.Google Scholar
  25. Garcia J. H., Liu K.-F., Lion J., and Xu J. (1993) Astrocytic and microvascular responses to the occlusion of a middle cerebral artery (Wistar rat).J. Neuropathol. Exp. Neurol. 52, 288.Google Scholar
  26. Garcia J. H., Liu K.-F., and Ho K. L. (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex.Stroke 26, 636–643.PubMedGoogle Scholar
  27. Ghersi-Egea J. F., Mim A., and Siest G. (1988) A new aspect of the protective functions of the blood-brain barrier. Activities of four drug metabolizing enzymes in isolated rat brain microvessels.Life Sci. 42, 2515–2523.PubMedCrossRefGoogle Scholar
  28. Giulian D. (1995) Microglia and neuron dysfunction, inNeuroglia (Kettenmann H. and Ransom B., eds.), pp. 671–684, Oxford University Press, England.Google Scholar
  29. Giulian D. and Robertson C. (1990) Inhibition of mononuclear phagocytes improves functional recovery after damage to the spinal cord of rabbit.Ann. Neurol. 27, 33–42.PubMedCrossRefGoogle Scholar
  30. Giulian D., Corpuz M., Chapman S., Mansouri M., and Robertson C. (1993) Reactive mononuclear phagocytes release neuron killing factors after stroke and trauma.J. Neurosci. Res. 36, 681–693.PubMedCrossRefGoogle Scholar
  31. Goracci G., Francescangeli E., Piccinin G. L., Binaglia L., Woelk H., and Porcellati G. (1975) The metabolism of labelled ethanolamine in neuronal and glial cells of the rabbit in vivo.J. Neurochem. 24, 1181–1186.PubMedCrossRefGoogle Scholar
  32. Goto Y., Okamoto S., Yonekawa Y., Taki W., Kikuchi H., Handa H., et al. (1988) Degradation of phospholipid molecular species during experimental cerebral ischemia in rats.Stroke 19, 728–735.PubMedGoogle Scholar
  33. Halát G., Lukáčová N., Chavko M., and Maršala J. (1987) Effects of incomplete ischemia and subsequet recirculation on free palmitate, stearate, oleate and arachidonate levels in lumbar and cervical spinal cord of rabbit.Gen. Physiol. Biophys. 6, 387–299.PubMedGoogle Scholar
  34. Hall E. D. and Braughler J. M. (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation.Free Radical Biol. Med. 6, 303–313.CrossRefGoogle Scholar
  35. Horrocks L. A., Demediuk P., Saunders R. D., Dugan L., Clendenon N. R., Means E. D., et al. (1985) The degradation of phospholipids, formation of metabolites of arachidonic acid, and demyelination following experimental spinal cord injury.Cent. Nerv. Syst. Trauma 2, 115–120.PubMedGoogle Scholar
  36. Kanfer J. N. (1980) The base exchange enzymes and phospholipase D of mammalian tissues.Can. J. Biochem. 58, 1370–1380.PubMedCrossRefGoogle Scholar
  37. Kanfer J. N., McCartney D., and Hattori H. (1988) Regulation of the choline, ethanolamine and serine base exchange enzyme activities of rat brain microsomes by phosphorylation and dephosphorylation.FEBS Lett. 240, 101–104.PubMedCrossRefGoogle Scholar
  38. Kato H. and Kogure K. (1990) Neuronal damage following nonlethal but repeated cerebral ischemia in the gerbil.Acta Neuropathol. 79, 494–500.PubMedCrossRefGoogle Scholar
  39. Kato H., Kogure K., and Nakano S. (1989) Neuronal damage following repeated brief ischemia in the gerbil.Brain Res. 479, 366–370.PubMedCrossRefGoogle Scholar
  40. Kato H., Araki T., and Kogure K. (1990a) Role of the excitotoxic mechanism in the development of neuronal damage following repeated brief cerebral ischemia in the gerbil: Protective effects of MK-801 and pentobarbital.Brain Res. 516, 175–179.PubMedCrossRefGoogle Scholar
  41. Kato H., Araki T, Kogure K., Murakami M., and Umemura K. (1990b) Sequential cerebr blood flow changes in short-term cerebral ischemia in gerbils.Stroke 21, 1346–1349.PubMedGoogle Scholar
  42. Kato H., Liu Y., Araki T., and Kogure K. (1991a) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: Cumulative damage and protective effects.Brain Res. 553, 238–242.PubMedCrossRefGoogle Scholar
  43. Kato H., Araki T., and Kogure K. (1991b) Sequential changes in muscarinic acetylcholine, adenosine A1 and calcium antagonist binding sites in the gerbil hippocampus following repeated brief ischemia.Brain Res. 553, 33–38.PubMedCrossRefGoogle Scholar
  44. Kato H., Araki T., and Kogure K. (1991c) Autoradiographic analysis of second-messenger systems in the gerbil hippocampus following repeated brief ischemic insults.Brain Res. Bull. 27, 759–765.PubMedCrossRefGoogle Scholar
  45. Kato H., Kogure K., Araki T., Liu X.-H., Kato K., and Itoyama Y. (1995) Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance.J. Cereb. Blood Flow Metab. 15, 60–70.PubMedGoogle Scholar
  46. Kitagawa K., Matsumoto M., Tagayra M., Hata R., Ueda H., Niinobe M., et al. (1991) Hyperthermia-induced neuronal protection against ischemic injury in gerbils.J. Cereb. Blood Flow Metab. 11, 449–452.PubMedGoogle Scholar
  47. Lee S. L. and Fanbrug B. L. (1986) Serotonin uptake by bovine pulmonary artery endothelial cells in culture. II. Stimulation by hypoxia.Am. J. Physiol. 250 (Cell Physiol. 19):C, 766–770.Google Scholar
  48. Lukáčová N., Halát G., Chavko M., and Maršala J. (1996) Ischemia reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipids profiles.Neurochem. Res. 21, 869–873.PubMedCrossRefGoogle Scholar
  49. Lukáčová N., and Maršala J. (1997a) Regional distribution of phospholipids and polyphosphatidyl inositides in the rabbit’s spinal cord.Neurochem. Res. 22, 687–92.PubMedCrossRefGoogle Scholar
  50. Lukáčová N., Maršala M., Halát G., and Maršala J. (1997b) Neuroprotective effect of graded postischemic reoxygenation in spinal cord ischemia in the rabbit.Brain Res. Bull. 43, 457–465.PubMedCrossRefGoogle Scholar
  51. Lukáčová N., Gottlieb M., and Maršala J. (1998a) Lipid peroxidation and phospholipid composition in rat brain regions after ischemia and in early reperfusion periods.Arch. Ital. Biol. 136, 167–180.PubMedGoogle Scholar
  52. Lukáčová N., Jalč P., and Maršala J. (1998b) Phospholipid composition in spinal cord regions after ischemia/reperfusion.Neurochem. Res. 23, 1071–1079.Google Scholar
  53. Mandai K., Matsumoto M., Kitagawa K., Matsushita K., Ohtsuki T., Mabuchi T., et al. (1997) Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia.Neuroscience 77, 849–861.PubMedCrossRefGoogle Scholar
  54. Maršala J., Šulla I., Šanta M., Maršala M., Mechírová E., and Jalč P. (1989) Early neurohistopathological changes of canine lumbosacral spinal cord segments in ischemiareperfusion-induced paraplegia.Neurosci. Lett. 106, 83–88.PubMedCrossRefGoogle Scholar
  55. Maršala J., Šulla I., Šanta M., Maršala M., Zachariáš L., and Radoňák J. (1991) Mapping of the canine lumbosacral spinal cord neurons by Nauta method at the end of the early phase of paraplegia induced by ischemia and reperfusion.Neuroscience 45, 479–494.PubMedCrossRefGoogle Scholar
  56. Maršala J., Marsala M., Vanicky I., Galik J., and Orendacova J. (1992) Post cardiac arrest hyperoxic resuscitation enhances neuronal vulnerability of the respiratory rhythm generator and some brainstem and spinal cord neuronal pools in the dog.Neurosci. Lett. 146, 121–124.PubMedCrossRefGoogle Scholar
  57. Maršala J., Kluchová D., and Maršala M. (1997) Spinal cord gray matter layers rich in NADPH diaphorase-positive neurons are refractory to ischemia-reperfusion-induced injury: A histochemical and silver impregnation study in rabbit.Exp. Neurol. 145, 165–179.PubMedCrossRefGoogle Scholar
  58. Murphy E. J., Behrmann D., Bates C. M., and Horrocks L. A. (1994) Lipid alterations following impact spinal cord injury in the rat.Mol. Chem. Neuropathol. 23, 13–26.PubMedCrossRefGoogle Scholar
  59. Nakano S., Kato H., and Kogure K. (1989) Neuronal damage in the hippocampus in a new model of repeated reversible transient cerebral ischemia.Brain Res. 490, 178–180.PubMedCrossRefGoogle Scholar
  60. Newton A. C. and Koshland D. E. Jr. (1989) High cooperativity, specificity, and multiplicity in the protein kinase C-lipid interaction.J. Biol. Chem. 264, 14,909–14,915.Google Scholar
  61. Nishizuka Y. (1986) Studies and perspectives of protein kinase C.Science 233, 305–312.PubMedCrossRefGoogle Scholar
  62. Reddy T. S., and Horrocks L. A. (1982) Effects of neonatal undernutrition on the lipid composition of gray and white matter in rat brain.J. Neurochem. 38, 601–605.PubMedCrossRefGoogle Scholar
  63. Rouser G., Fleischer S., and Yamamoto A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.Lipids 5, 494–496.PubMedCrossRefGoogle Scholar
  64. Rubinstein A. and Arbit E. (1990) Spinal blood flow in the rat under normal physiological conditions.Neurosurgery 27, 882–886.PubMedCrossRefGoogle Scholar
  65. Saito S., Kidd G. J., Trapp B. D., Dawson T. M., Bredt D. S., Wilson D. A., et al. (1994) Rat spinal cord neurons containing nitric oxide synthase.Neuroscience 59, 447–456.PubMedCrossRefGoogle Scholar
  66. Samochocki M. and Strosznajder J. (1990) Regulation of arachidonic acid release by enzymes(s) of rat brain cortex.Acta Biochim. Polonica 37, 93–97.Google Scholar
  67. Savolainen H. (1978) Superoxide dismutase and glutathione peroxidase activities in rat brain.Res. Commun. Chem. Pathol. Pharmacol. 21, 173–175.PubMedGoogle Scholar
  68. Segler-Stahl K., Demediuk P., Castillo R., Watts C., and Moscatelli E. A. (1985) Phospholipids of normal and experimentally injured spinal cord of the miniature pig.Neurochem. Res. 10, 563–569.PubMedCrossRefGoogle Scholar
  69. Stys P. K., Waxman S. G., and Ransom B. R. (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger.J. Neurosci. 12, 430–439.PubMedGoogle Scholar
  70. Sun G. Y., Manning R., and Strosznajder J. (1980) Effects of postdecapitative ischemia and hypoxia on the phssphoglyceride acyl groups of rat brain membranes.Neurochem. Res. 11, 1211–1219.CrossRefGoogle Scholar
  71. Tayarani I., Chaudiere J., Lefauconnier J. M., and Bourre J. M. (1987) Enzymatic protection against peroxidative damage in isolated brain capillaries.J. Neurochem. 48, 1399–1410.PubMedCrossRefGoogle Scholar
  72. Tomida S., Nowak T. S. J., Vass K., Lohr J. M., and Klatzo I. (1987) Experimental model for repetitive ischemic attacks in the gerbil: The cumulative effect of repeated ischemic insults.J. Cereb. Blood Flow Metab. 7, 773–782.PubMedGoogle Scholar
  73. Torre J. C. (1984) Spinal cord injury models.Prog. Neurobiol. 22, 289–344.PubMedCrossRefGoogle Scholar
  74. Tretyakov A. V. and Farber H. W. (1993) Endothelial cell phospholipid distribution and phospholipase activity during acute and chronic hypoxia.Am. J. Physiol. 265 (Cell Physiol. 34:C), 770–780.Google Scholar
  75. Umemura A., Mabe H., Nagai H., and Sugino F. (1992) Action of phospholipases A2 and C on free fatty acid release during complete ischemia in rat neocortex. Effect of phospholipase C inhibitor andN-methyl-d-aspartate antagonist.J. Neurosurg. 76, 648–651.PubMedGoogle Scholar
  76. Valtschanoff J. G., Weinberg R. J., and Rustioni A. (1992) NADPH diaphorase in the spinal cord of rats.J. Comp. Neurol. 321, 209–222.PubMedCrossRefGoogle Scholar
  77. Vizzard M. A., Erdman S. L., Erickson V. L., Stewart R. J., Roppolo J. R., and Groat W. C. (1994) Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.J. Comp. Neurol. 339, 62–75.PubMedCrossRefGoogle Scholar
  78. Waxman S. G. and Ritchi J. M. (1985) Organization of ion channels in the myelinated nerve fibers.Science 228, 1502–1507.PubMedCrossRefGoogle Scholar
  79. Worley P. F., Baraban J. M., Colvin J. S., and Snyder S. H. (1987) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C.Nature 325, 159–161.PubMedCrossRefGoogle Scholar
  80. Yasuda H., Kishiro K., Izumi N., and Nakanishi M. (1985) Biphasic liberation of arachidonic and stearic acids during cerebral ischemia.J. Neurochem. 45, 168–172.PubMedCrossRefGoogle Scholar
  81. Yu P. H. (1978) Radioenzymatic estimation of S-adenosylmethionine in rat brain regions and subcellular fractions.Anal. Biochem. 86, 498–504.PubMedCrossRefGoogle Scholar
  82. Zivin J. A., DeGirolami U., and Hurwitz E. L. (1982) Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study.Arch. Neurol. 39, 408–412.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Institute of NeurobiologySlovak Academy of SciencesKoŝiceSlovak Republic

Personalised recommendations