Effects of valproate on amino acid and monoamine concentrations in striatum of audiogenic seizure-prone balb/c mice

  • Jerry P. Vriend
  • Nancy A. M. Alexiuk
Original Articles


The effects of aalproate on CNS concentrations of γ-aminobutyric acid (GABA), glutamate (GLU), glutamine (GLN), dopamine (DA), serotonin (5-HT), and metabolites were examined in tissue extracts of caudate nucleus of genetic substrains of Balb/c mice susceptible (EP) or resistant (ER) to audiogenic seizures. Generalized tonic-clonic seizures observed in EP mice were inhibited by valproate, administered 1 h prior to testing, in a dose-response fashion. Concentrations of GABA, GLU, and GLN, which were lower in EP mice than in ER mice, were significantly increased by valproate at doses of 180 and 360 mg/kg. Concentrations of homovanillic acid (HVA) and hydroxyindoleacetic acid (5-HIAA), metabolites of DA and 5-HT were substantially increased by valproate at these doses. Thein situ activity of tyrosine hydroxylase (TH) was not significantly influenced by valproate, whereas a valproate-induced increase in tryptophan hydroxylase (TPH) activity was observed in both striatum and in midbrain tegmentum. The data are consistent with the interpretation that anticonvulsive doses of valproate influences the intraneuronal metabolism of monoamines, GABA, and glutamate concurrently. Valproate’s influence on the metabolism of both major inhibitory (GABA) and excitatory (GLU) amino acids in striatum could contribute to its anticonvulsive effects in genetically seizure-prone mice, as well as to the accumulation of DA and 5-HT metabolites.

Index Entries

Valproate GABA glutamate dopamine serotonin seizures striatum caudate nucleus 


  1. Al-Tajir G., Chandler C. J., Starr B. S., and Star M. S. (1990) Opposite effects of stimulation of D1 and D2 dopamine receptors on the expression of motor seizures in mouse and rat.Neuropharmacology 29, 657–661.PubMedCrossRefGoogle Scholar
  2. Anlezark G., Horton R. W., Meldrum S. S., and Sawaya M. C. B. (1976) Anticonvulsant action of ethanolamine-O-sulphate and di-n-propylacetate and the metabolism of γ-aminobutyric acid (GABA) in mice with audiogenic seizures.Biochem. Pharmacol. 25, 413–417.PubMedCrossRefGoogle Scholar
  3. Biggs C. S., Pearce B. R., Fowler L. J., and Whitton P. S. (1992) Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain anin vivo microdialysis study.J. Neurochem. 59, 1702–1708.PubMedCrossRefGoogle Scholar
  4. Browning R. A. (1986) Neurobiology of seizure disposition in the genetically epilepsy-prone rat. Neuroanatomical localization of structures responsible for seizures in the GEPR: Lesion studies.Life Sci. 39, 857–867.PubMedCrossRefGoogle Scholar
  5. Browning R., Nelson D., Mogharreban N., Jobe P., and Laird H. (1985) Effect of midbrain and pontine tegmental lesions of audiogenic seizures in genetically epilepsy-prone rats.Epilepsia 26, 175–183.PubMedCrossRefGoogle Scholar
  6. Carlsson A., Davis J. N., Kehr W., Lindqvist M., and Atack C. V. (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brainin vivo using an inhibitor of the aromatic amino acid decarboxylase.Arch. Pharmacol. 275, 153–168.CrossRefGoogle Scholar
  7. Chapman A., Keane P. E., Meldrum B. S., Simiand J., and Vernieres J. C. (1982a) Mechanism of anticonvulsant action of valproate.Prog. Neurobiol. 19, 315–359.PubMedCrossRefGoogle Scholar
  8. Chapman A. G., Riley K., Evans M. C., and Meldrum B. S. (1982b) Acute effects of sodium valproate and γ-vinyl GABA on regional amino acid metabolism in the rat brain: Incorporation of 2-(14C)-glucose into amino acids.Neurochem. Res. 7, 1089–1105.PubMedCrossRefGoogle Scholar
  9. Chapman A. G., Meldrum B. S., Nanji N., and Watkins J. C. (1987) Anticonvulsant action and biochemical effects in DBA/2 mice of CPP (3-((+/−)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate), a novelN-methyl-d-aspartate antagonist.Eur. J. Pharmacol. 139, 91–96.PubMedCrossRefGoogle Scholar
  10. Faingold C. L., Randall M. E., Naritoku D. K., and Boersma-Anderson C. A. (1993) Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures.Exp. Neurol. 119, 198–204.PubMedCrossRefGoogle Scholar
  11. Fohlmeister J., Adelman W., and Breman J. (1984) Excitable channel currents and gating times in the presence of anticonvulsants, ethosuximide and valproate.J. Pharmacol. Exp. Ther. 230, 75–81.PubMedGoogle Scholar
  12. Gale K. and Browning R. A. (1988) Anatomical and neurochemical substrates of clonic and tonic seizures, inMechanims of Epileptogenesis (Dichter M. A., ed.), pp. 111–152. Phenum, New York.Google Scholar
  13. Gamache P., Ryan E., Svendsen C., Murayama K., and Acworth I. N. (1993) Simultaneous measurement of monoamines, metabolites and amino acids in brain tissue and microdialysis perfusates.J. Chromatog. 614, 213–220.CrossRefGoogle Scholar
  14. Godin Y., Heiner L., Mark J., and Mandel P. (1969) Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism.J. Neurochem. 16, 869–873.PubMedCrossRefGoogle Scholar
  15. Grace A. A. and Bunney B. S. (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons.Eur. J. Pharmacol. 59, 211–218.PubMedCrossRefGoogle Scholar
  16. Horton R. W., Anglezark G. M., Sawaya C. B., and Meldrum S. S. (1977) Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate.Eur. J. Pharmacol. 41, 387–397.PubMedCrossRefGoogle Scholar
  17. Iadarola M. J., Raines A., and Gale K. (1979) Differential effects of n-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of rat brain.J. Neurochem. 33, 1119–1123.PubMedCrossRefGoogle Scholar
  18. Iadarola M. and Gale K. (1982) Substantia nigra: site of anticonvulsant activity mediated by gammabutyric acid.Science 218, 1237–1240.PubMedCrossRefGoogle Scholar
  19. Kesner R. (1966) Subcortical mechanisms of audiogenic seizures.Exp. Neurol. 15, 192–205.PubMedCrossRefGoogle Scholar
  20. Klockgether T., Turski L., Honore T., Zhang Z. M., Gash D. M., Kurlan R., and Greenamyre J. T. (1991) The AMPA receptor antagonist NBQX has antipark-insonian effects in monoamine-depleted rats and MPTP-treated monkeys.Ann. Neurol. 30, 717–723.PubMedCrossRefGoogle Scholar
  21. Kreigstein A. R. (1988) The pathogenesis of epilepsy: relevance to therapy.Curr. Opin. Neurol. Neurosurg. 1, 200–205.Google Scholar
  22. Kukino K. and Deguchi T. (1977) Effects of sodium dipropylacetate and γ-aminobutyric acid and biogenic amines in rat brain.Chem. Pharm. Bull. 25, 2257–2262.PubMedGoogle Scholar
  23. Lehmann J. Chapman A. G., Meldrum B. S., Hutchison A., Tsai C., and Wood P. L. (1988) CGS 19755 is a potent and competitive antagonist at NMDA-type receptors.Eur. J. Pharmacol. 154, 89–93.PubMedCrossRefGoogle Scholar
  24. Loscher W. (1981) Valproate induced changes in GABA metabolism at the subcellular level.Biochem. Pharmacol. 30, 1364–1366.PubMedCrossRefGoogle Scholar
  25. Loscher W. (1989) Valproate enhances GABA turnover in the substantia nigra.Brain Res. 501, 198–203.PubMedCrossRefGoogle Scholar
  26. Loscher W. (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain.Neurochem. Res. 18, 485–502.PubMedCrossRefGoogle Scholar
  27. Macdonald R. L. and Kelly K. M. (1993) Antiepileptic drug mechanisms of action.Epilepsia 34, S1–8.CrossRefGoogle Scholar
  28. MacMillian V. (1979) The effects of the anticonvulsant valproic acid on cerebral indole amine metabolism.Can. J. Physiol. Pharmacol. 57, 843–847.Google Scholar
  29. McLean M. and Macdonald R. (1986) Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture.J. Pharmacol. Exp. Ther. 237, 1001–1011.PubMedGoogle Scholar
  30. Miller J. W. and Ferrendelli J. A. (1988) Some subcortical mechanisms involved in experimental generalized seizures, inMechanisms of Epileptogenesis (Dichter M. A., ed.), pp. 101–110, Plenum, New York.Google Scholar
  31. Mitsikostas D., Sfikakis A., Papadopoulou-Daifoti Z., and Varonos D. (1993) The effects of valproate in brain monomanies of juvenile rats after stress.Prog. Neurospsychopharmacol.Biol. Psychiatry 17, 295–310.CrossRefGoogle Scholar
  32. Nichols A. C. and Yielding K. L. (1993) Anticonvulsant activity of antagonists for the NMDA-associated glycine binding site.Mol. Chem. Neuropathol. 19, 269–282.PubMedCrossRefGoogle Scholar
  33. Preisendorfer U., Zeise M. L., and Klee M. R. (1987) Valproate enhances inhibitory postsynaptic potentials in hippocampal neurons in vitro.Brain Res. 435, 213–219.PubMedCrossRefGoogle Scholar
  34. Sawaya M. C. B., Horton R. W., and Meldrum B. S. (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolising GABA.Epilepsia 16, 649–655.PubMedCrossRefGoogle Scholar
  35. Semenova T. P. and Ticku M. K. (1992) Effects of 5-HT receptor antagonists on seizure-susceptibility and locomotor activity in DBA/2 mice.Brain Res. 588, 229–236.PubMedCrossRefGoogle Scholar
  36. Simler S., Ciesielski L., Maitre M., Randrianarisoa H., and Mandel P. (1973) Effect of sodiumn-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level.Biochem. Pharmacol. 22, 1701–1708.PubMedCrossRefGoogle Scholar
  37. Thomsen C., Klitgaard H., Sheardown M., Jackson H. C., Eskesen K., Jacobsen P. Treppendahl S., and Suzdak P. D. (1994) (S)-4-carboxy-3-hydroxyphenyl-glycine, an agtagonist of metabotrophic glutamate receptor (mGluR) 1a and an agonist of mGluR2, protects against audiogenic seizures in DBA/2 mice.J. Neurochem. 62L, 2492–2495.Google Scholar
  38. Turski L., Meldrum B., Cavalheiro E., Calderazzo-Filho L., Bortolotto Z., Ikonomidou-Turski C., and Turski W. (1987) Paradoxical anticonvulsant activity of the excitatory amino acid N-methl-d-aspartate in the rat caudate-putamen.Proc. Natl. Acad. Sci. USA 84, 1689–1693.PubMedCrossRefGoogle Scholar
  39. Vriend J., Alexiuk N. A. M., Green-Johnson J., and Ryan R. (1993) Determination of amino acids and monoamine neurotransmitters in caudate nucleus of seizure-resistant and seizure-prone Balb/c mice.J. Neurochem. 60, 1300–1307.PubMedCrossRefGoogle Scholar
  40. Whitton P. S., Oreskovic D., Markovic Z., Skarpa D., and Bulat M. (1983) Effect of the antiepiletic DI-n-propylacetamide on 5-hydroxytryptamine turnover in the brain and 5-hydroxyindoleacetic acid level in the cerebrospinal fluid.Eur. J. Pharmacol. 91, 57–62.PubMedCrossRefGoogle Scholar
  41. Whitton P. S., Oreskovic D., Jernej B., and Bulat M. (1985) Effect of valproic acid on 5-hydroxytryptamine turnover in mouse brain.J. Pharm. Pharmacol. 37, 199–200.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Jerry P. Vriend
    • 1
  • Nancy A. M. Alexiuk
    • 1
  1. 1.Department of AnatomyUniversity of ManitobaWinnipegCanada

Personalised recommendations