Skip to main content
Log in

The effect of postmortem delay on the distribution of microtubule-associated proteins τ, MAP2, and MAP5 in the rat

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Breakdown or disruption of the cytoskeleton has been implicated in the neurodegenerative processes of a variety of diseases, including Alzheimer disease (AD) and stroke. Studies of such diseases in the human involve the use of postmortem brain tissue. Postmortem delay may vary considerably from a few hours to a few days, and within this period, a degree of cytoskeletal breakdown may occur. It is therefore crucial to examine alterations occurring in the cytoskeleton as a result of postmortem delay and subtract these from those caused by the disease. In this study, the distribution of τ, MAP2, and MAP5 immunohistochemistry was examined following postmortem intervals of 0–72 h in the rat cerebral cortex, corpus callosum, caudate nucleus, and hippocampus. Each microtubule-associated protein (MAP) underwent unique changes that were dependent both on postmortem interval and the brain region examined. Following long postmortem delays, some of the changes in these proteins were similar to those seen in rodent models of cerebral ischemia. These results demonstrate that MAPs are not stable during postmortem delay in the rat. Therefore, caution must be exercised when interpreting changes in MAPs in human postmortem tissue, especially in cases where ischemic injury may be involved. Examination of control tissue carefully matched for postmortem delay is therefore essential to allow meaningful interpretation of cytoskeletal abnormalities in human neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H., Yagishita S., Amano N., Iwabuchi K., Hasegawa K., and Kowa K. (1992) Argyrophilic glial intracytoplasmic inclusions in multiple system atrophy: Immunocytochemical and ultrastructural study.Acta Neuropathol. 84, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Adams J. H. and Graham D. (1989a) Vascular and hypoxic disorders, inAn Introduction to Neuropathology. Churchill Livingstone, pp. 57–82.

  • Adams J. H. and Graham D. (1989b) Trauma, inAn Introduction to Neuropathology. Churchill Livingstone, pp. 118–136.

  • Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian central nervous system.J. Cell Biol. 101, 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Brion J-P., Couck A-M., Robertson J., Loviny T. L. F., and Anderton B. H. (1993) Neurofilament monoclonal antibodies RT97 and 8D8 recognize different modified epitopes in paired helical filament-τ in Alzheimer's disease.J. Neurochem. 60, 1372–1382.

    Article  PubMed  CAS  Google Scholar 

  • Catala I., Ferrer I., Galofre E., and Fabregues I. (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative golgi study on biopsy samples.Hum. Neurobiol. 6, 255–259.

    PubMed  CAS  Google Scholar 

  • Conner J. R. and Fine R. E. (1986) The distribution of transferrin immunoreactivity in the rat central nervous system.Brain Res. 368, 319–328.

    Article  Google Scholar 

  • Davis D. R., Brion J-P, Couck A-M., Gallo J-M., Hanger D., Ladhani K., Lewis C., Miller C. J., Rupniak T., Smith C., and Anderton B. H. (1995) The phosphorylation state of the microtubule-associated protein tau as affected by glutamate, colchicine and β-amyloid in primary rat cortical neuronal cultures.Biochem. J. 309, 941–949.

    PubMed  CAS  Google Scholar 

  • Dawson D. A. and Hallenbeck J. M. (1996) Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury.J. Cereb. Blood Flow Metab. 16, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Dewar D. and Dawson D. (1995a) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study.Brain Res. 684, 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Dewar D. and Dawson D. (1995b) Microtubule-associated proteins in focal cerebral ischaemia.J. Neurotrauma 12, 455.

    Google Scholar 

  • Fischer I., Romano C. G., and Grynspan F. (1991) Calpain-mediated proteolysis of microtubule associated proteins MAP1B and MAP2 in developing brain.Neurochem. Res. 16, 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J. W., Chang-Chui H., Cooper S. M., Lott I. T., and Cotman C. W. (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer's disease.Brain Res. 399, 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J. W., Lundgren K., and Kim Y. K. (1991) Abberant localization of MAP5 immunoreactivity in the hippocampal formation in Alzheimer's disease.J. Neurosci. Res. 30, 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J. W., Schwab C., Craddock S., Wilson J. L., and Creed Petigrew L. (1994) Alterations in τ immunostaining in the rat hippocampus following transient cerebral ischemia.J. Cereb. Blood Flow Metab. 14, 554–564.

    PubMed  CAS  Google Scholar 

  • Hanks S. D. and Flood D. G. (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus.Brain Res. 540, 63–82.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M., Arai T., and Ihara Y. (1990) Immunochemical evidence that fragments of phosphorylated MAP5 (MAP1B) are bound to neurofibrillary tangles in Alzheimer's disease.Neuron 4, 909–918.

    Article  PubMed  CAS  Google Scholar 

  • Huber G. and Matus A. (1984) Differences in the cellular distributions of two microtubule associated proteins, MAP1 and MAP2, in rat brain.J. Neurosci. 4, 151–160.

    PubMed  CAS  Google Scholar 

  • Irving E. A., McCulloch J., and Dewar D. (1996) Intracortical perfusion of glutamate in vivo induces alterations of tau and MAP2 immunoreactivity in the rat.Acta Neuropath. 92, 182–196.

    Google Scholar 

  • Irving E. A., Barnett S. C., Dickinson P., McCulloch J., Dewar D., and Griffiths I. R. (1995) Increased tau immunoreactivity within oligodendrocytes following cytotoxic injury.Soc. Neurosci. Abstract 134, 9.

    Google Scholar 

  • Iwatsubo T., Hasegawa M., and Ihara Y. (1994) Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics.Acta Neuropathol. 88, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G. V. W., Jope R. S., and Binder L. I. (1989) Proteolysis of tau by calpain.Biochem. Biophys. Res. Commun. 163, 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G. V. W., Litersky J. M., and Jope R. S. (1991) Degradation of microtubule-associated protein 2 and brain spectrin by calpain: comparative study.J. Neurochem. 56, 1630–1638.

    Article  PubMed  CAS  Google Scholar 

  • Kato S., Nakamura H., Hirano A., Ito H., Llena J. F., and Yen S-H. (1991) Agryrophilic ubiquinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy).Acta Neuropathol. 82, 488–493.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K., Matsumoto M., Niinobe M., Mikoshiba K., Hata R., Ueda H., Handa N., Fukunaga R., Isaka Y., Kimura K., and Kamada T. (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage.Neuroscience 31, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Kosik K. S., Duffy L. K., Dowling M. M., Abraham C. R., McCluskey A., and Selkoe D. J. (1984) Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles.Proc. Natl. Acad. Sci. USA 81, 7941–7945.

    Article  PubMed  CAS  Google Scholar 

  • Lopresti P., Szuchet S., Papasozomenos S. C., Zinkowski R. P., and Binder L. I. (1995) Functional implications for the microtubule-associated protein tau localized in oligodendrocytes.Proc. Natl. Acad. Sci. USA 92, 10,369–10,373.

    Article  CAS  Google Scholar 

  • Martin S. M., Landel H. B., Lansing A. J., and Vijayan V. K. (1991) Immunocytochemical double labeling of glial fibrillary acidic protein and transferrin permits the identification of astrocytes and oligodendrocytes in the rat brain.J. Neuropathol. Exp. Neurol. 50, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Neve R. L., Selkoe D., Kurnit D. M., and Kosik K. (1986) A cDNA for a human microtubule associated protein 2 epitope in the Alzheimer neurofibrillary tangle.Mol. Brain Res. 1, 193–196.

    Article  CAS  Google Scholar 

  • Nishimura M., Namba Y., Ikeda K., and Oda M. (1992) Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy.Neurosci. Lett. 143, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Papasozomenos S. C. and Binder L. I. (1987) Phosphorylation determines two distinct species of tau in the central nervous system.Cell Motil. Cytoskeleton 8, 210–226.

    Article  PubMed  CAS  Google Scholar 

  • Papp M. I. and Lantos P. L. (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology.Brain 117, 235–243.

    Article  PubMed  Google Scholar 

  • Pirollet F., Margolis R. L., and Job D. (1992) Ca(2+)-calmodulin regulated effectors of microtubule stability in neuronal tissues.Biochim. Biophys. Acta 1160, 113–119.

    PubMed  CAS  Google Scholar 

  • Schwab C., Bondada V., Sparks D. L., Cahan L. D., and Geddes J. W. (1994) Postmortem changes in the levels and localization of microtubule associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus.Hippocampus 4, 210–225.

    Article  PubMed  CAS  Google Scholar 

  • Spokes E. G. S. and Koch D. J. (1978) Postmortem stability of dopamine, glutaate decarboxylase and choline acetyltransferase in the mouse brain under conditions simulating the handling of human autopsy material.J. Neurochem. 31, 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q., Schuck T., Schmidt M. L., and Lee V. M-Y. (1989a) Distribution of phosphate-independent MAP2 epitopes revealed with monoclonal antibodies in microwave-denatured human nervous system tissues.J. Neurosci. Methods 29, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q., Schuck T., Schmidt M. L., and Lee V. M-Y. (1989b) Distribution of tau proteins in the normal human central and peripheral nervous system.J. Histochem. Cytochem. 37, 209–215.

    PubMed  CAS  Google Scholar 

  • Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Res. Rev. 15, 101–120.

    Article  PubMed  CAS  Google Scholar 

  • Tucker R. P., Binder L. I., and Matus A. I. (1988) Neuronal microtubule-associated proteins in the embryonic avian spinal cord.J. Comp. Neurol. 271, 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Ulloa L., Montejo de Garcini E., Gomez-Ramos P., Moran M. A., and Avila J. (1994) Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer's disease patients.Mol. Brain Res. 26, 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M., Wada Y., Tsukagoshi H., Otomo E-I., and Hayakawa M. (1988) A quantitative Golgi study of basal dendrites of hippocampal CA1 pyramidal cells in senile dementia of Alzhemier type.J. Neurol. Neurosurg. Psych. 51, 1088–1090.

    CAS  Google Scholar 

  • Yamada T., McGeer P. L., and McGeer E. G. (1992) Appearance of paired nucleated, Tau-positive glia in patients with progressive supranuclear palsy brain tissue.Neurosci. Lett. 135, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K., Morimoto K., and Yanagihara T. (1986) Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectron microscopic investigation.Brain Res. 384, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara T., Brengman J. M., and Mushynski W. E. (1990) Differential vulnerability of microtubule components in cerebral ischemia.Acta Neuropathol. 80, 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Yen S. H., Dickson D. W., Crowe A., Butler M., and Shelanski M. L. (1987) Alzheimer's neurofibrillary tangles contain unique epitopes in common with heat-stable microtubule-associated proteins Tau and MAP2.Am. J. Pathol. 126, 81–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Irving.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irving, E.A., McCulloch, J. & Dewar, D. The effect of postmortem delay on the distribution of microtubule-associated proteins τ, MAP2, and MAP5 in the rat. Molecular and Chemical Neuropathology 30, 253–271 (1997). https://doi.org/10.1007/BF02815102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815102

Index Entries

Navigation