Molecular and Chemical Neuropathology

, Volume 30, Issue 3, pp 253–271 | Cite as

The effect of postmortem delay on the distribution of microtubule-associated proteins τ, MAP2, and MAP5 in the rat

  • E. A. Irving
  • J. McCulloch
  • D. Dewar
Original Articles


Breakdown or disruption of the cytoskeleton has been implicated in the neurodegenerative processes of a variety of diseases, including Alzheimer disease (AD) and stroke. Studies of such diseases in the human involve the use of postmortem brain tissue. Postmortem delay may vary considerably from a few hours to a few days, and within this period, a degree of cytoskeletal breakdown may occur. It is therefore crucial to examine alterations occurring in the cytoskeleton as a result of postmortem delay and subtract these from those caused by the disease. In this study, the distribution of τ, MAP2, and MAP5 immunohistochemistry was examined following postmortem intervals of 0–72 h in the rat cerebral cortex, corpus callosum, caudate nucleus, and hippocampus. Each microtubule-associated protein (MAP) underwent unique changes that were dependent both on postmortem interval and the brain region examined. Following long postmortem delays, some of the changes in these proteins were similar to those seen in rodent models of cerebral ischemia. These results demonstrate that MAPs are not stable during postmortem delay in the rat. Therefore, caution must be exercised when interpreting changes in MAPs in human postmortem tissue, especially in cases where ischemic injury may be involved. Examination of control tissue carefully matched for postmortem delay is therefore essential to allow meaningful interpretation of cytoskeletal abnormalities in human neurodegenerative disease.

Index Entries

τ microtubule-associated protein cytoskeleton oligodendrocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H., Yagishita S., Amano N., Iwabuchi K., Hasegawa K., and Kowa K. (1992) Argyrophilic glial intracytoplasmic inclusions in multiple system atrophy: Immunocytochemical and ultrastructural study.Acta Neuropathol. 84, 273–277.PubMedCrossRefGoogle Scholar
  2. Adams J. H. and Graham D. (1989a) Vascular and hypoxic disorders, inAn Introduction to Neuropathology. Churchill Livingstone, pp. 57–82.Google Scholar
  3. Adams J. H. and Graham D. (1989b) Trauma, inAn Introduction to Neuropathology. Churchill Livingstone, pp. 118–136.Google Scholar
  4. Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian central nervous system.J. Cell Biol. 101, 1371–1378.PubMedCrossRefGoogle Scholar
  5. Brion J-P., Couck A-M., Robertson J., Loviny T. L. F., and Anderton B. H. (1993) Neurofilament monoclonal antibodies RT97 and 8D8 recognize different modified epitopes in paired helical filament-τ in Alzheimer's disease.J. Neurochem. 60, 1372–1382.PubMedCrossRefGoogle Scholar
  6. Catala I., Ferrer I., Galofre E., and Fabregues I. (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative golgi study on biopsy samples.Hum. Neurobiol. 6, 255–259.PubMedGoogle Scholar
  7. Conner J. R. and Fine R. E. (1986) The distribution of transferrin immunoreactivity in the rat central nervous system.Brain Res. 368, 319–328.CrossRefGoogle Scholar
  8. Davis D. R., Brion J-P, Couck A-M., Gallo J-M., Hanger D., Ladhani K., Lewis C., Miller C. J., Rupniak T., Smith C., and Anderton B. H. (1995) The phosphorylation state of the microtubule-associated protein tau as affected by glutamate, colchicine and β-amyloid in primary rat cortical neuronal cultures.Biochem. J. 309, 941–949.PubMedGoogle Scholar
  9. Dawson D. A. and Hallenbeck J. M. (1996) Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury.J. Cereb. Blood Flow Metab. 16, 170–174.PubMedCrossRefGoogle Scholar
  10. Dewar D. and Dawson D. (1995a) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study.Brain Res. 684, 70–78.PubMedCrossRefGoogle Scholar
  11. Dewar D. and Dawson D. (1995b) Microtubule-associated proteins in focal cerebral ischaemia.J. Neurotrauma 12, 455.Google Scholar
  12. Fischer I., Romano C. G., and Grynspan F. (1991) Calpain-mediated proteolysis of microtubule associated proteins MAP1B and MAP2 in developing brain.Neurochem. Res. 16, 891–898.PubMedCrossRefGoogle Scholar
  13. Geddes J. W., Chang-Chui H., Cooper S. M., Lott I. T., and Cotman C. W. (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer's disease.Brain Res. 399, 156–161.PubMedCrossRefGoogle Scholar
  14. Geddes J. W., Lundgren K., and Kim Y. K. (1991) Abberant localization of MAP5 immunoreactivity in the hippocampal formation in Alzheimer's disease.J. Neurosci. Res. 30, 183–191.PubMedCrossRefGoogle Scholar
  15. Geddes J. W., Schwab C., Craddock S., Wilson J. L., and Creed Petigrew L. (1994) Alterations in τ immunostaining in the rat hippocampus following transient cerebral ischemia.J. Cereb. Blood Flow Metab. 14, 554–564.PubMedGoogle Scholar
  16. Hanks S. D. and Flood D. G. (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus.Brain Res. 540, 63–82.PubMedCrossRefGoogle Scholar
  17. Hasegawa M., Arai T., and Ihara Y. (1990) Immunochemical evidence that fragments of phosphorylated MAP5 (MAP1B) are bound to neurofibrillary tangles in Alzheimer's disease.Neuron 4, 909–918.PubMedCrossRefGoogle Scholar
  18. Huber G. and Matus A. (1984) Differences in the cellular distributions of two microtubule associated proteins, MAP1 and MAP2, in rat brain.J. Neurosci. 4, 151–160.PubMedGoogle Scholar
  19. Irving E. A., McCulloch J., and Dewar D. (1996) Intracortical perfusion of glutamate in vivo induces alterations of tau and MAP2 immunoreactivity in the rat.Acta Neuropath. 92, 182–196.Google Scholar
  20. Irving E. A., Barnett S. C., Dickinson P., McCulloch J., Dewar D., and Griffiths I. R. (1995) Increased tau immunoreactivity within oligodendrocytes following cytotoxic injury.Soc. Neurosci. Abstract 134, 9.Google Scholar
  21. Iwatsubo T., Hasegawa M., and Ihara Y. (1994) Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics.Acta Neuropathol. 88, 129–136.PubMedCrossRefGoogle Scholar
  22. Johnson G. V. W., Jope R. S., and Binder L. I. (1989) Proteolysis of tau by calpain.Biochem. Biophys. Res. Commun. 163, 1505–1511.PubMedCrossRefGoogle Scholar
  23. Johnson G. V. W., Litersky J. M., and Jope R. S. (1991) Degradation of microtubule-associated protein 2 and brain spectrin by calpain: comparative study.J. Neurochem. 56, 1630–1638.PubMedCrossRefGoogle Scholar
  24. Kato S., Nakamura H., Hirano A., Ito H., Llena J. F., and Yen S-H. (1991) Agryrophilic ubiquinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy).Acta Neuropathol. 82, 488–493.PubMedCrossRefGoogle Scholar
  25. Kitagawa K., Matsumoto M., Niinobe M., Mikoshiba K., Hata R., Ueda H., Handa N., Fukunaga R., Isaka Y., Kimura K., and Kamada T. (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage.Neuroscience 31, 401–411.PubMedCrossRefGoogle Scholar
  26. Kosik K. S., Duffy L. K., Dowling M. M., Abraham C. R., McCluskey A., and Selkoe D. J. (1984) Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles.Proc. Natl. Acad. Sci. USA 81, 7941–7945.PubMedCrossRefGoogle Scholar
  27. Lopresti P., Szuchet S., Papasozomenos S. C., Zinkowski R. P., and Binder L. I. (1995) Functional implications for the microtubule-associated protein tau localized in oligodendrocytes.Proc. Natl. Acad. Sci. USA 92, 10,369–10,373.CrossRefGoogle Scholar
  28. Martin S. M., Landel H. B., Lansing A. J., and Vijayan V. K. (1991) Immunocytochemical double labeling of glial fibrillary acidic protein and transferrin permits the identification of astrocytes and oligodendrocytes in the rat brain.J. Neuropathol. Exp. Neurol. 50, 161–170.PubMedCrossRefGoogle Scholar
  29. Neve R. L., Selkoe D., Kurnit D. M., and Kosik K. (1986) A cDNA for a human microtubule associated protein 2 epitope in the Alzheimer neurofibrillary tangle.Mol. Brain Res. 1, 193–196.CrossRefGoogle Scholar
  30. Nishimura M., Namba Y., Ikeda K., and Oda M. (1992) Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy.Neurosci. Lett. 143, 35–38.PubMedCrossRefGoogle Scholar
  31. Papasozomenos S. C. and Binder L. I. (1987) Phosphorylation determines two distinct species of tau in the central nervous system.Cell Motil. Cytoskeleton 8, 210–226.PubMedCrossRefGoogle Scholar
  32. Papp M. I. and Lantos P. L. (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology.Brain 117, 235–243.PubMedCrossRefGoogle Scholar
  33. Pirollet F., Margolis R. L., and Job D. (1992) Ca(2+)-calmodulin regulated effectors of microtubule stability in neuronal tissues.Biochim. Biophys. Acta 1160, 113–119.PubMedGoogle Scholar
  34. Schwab C., Bondada V., Sparks D. L., Cahan L. D., and Geddes J. W. (1994) Postmortem changes in the levels and localization of microtubule associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus.Hippocampus 4, 210–225.PubMedCrossRefGoogle Scholar
  35. Spokes E. G. S. and Koch D. J. (1978) Postmortem stability of dopamine, glutaate decarboxylase and choline acetyltransferase in the mouse brain under conditions simulating the handling of human autopsy material.J. Neurochem. 31, 381–383.PubMedCrossRefGoogle Scholar
  36. Trojanowski J. Q., Schuck T., Schmidt M. L., and Lee V. M-Y. (1989a) Distribution of phosphate-independent MAP2 epitopes revealed with monoclonal antibodies in microwave-denatured human nervous system tissues.J. Neurosci. Methods 29, 171–180.PubMedCrossRefGoogle Scholar
  37. Trojanowski J. Q., Schuck T., Schmidt M. L., and Lee V. M-Y. (1989b) Distribution of tau proteins in the normal human central and peripheral nervous system.J. Histochem. Cytochem. 37, 209–215.PubMedGoogle Scholar
  38. Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Res. Rev. 15, 101–120.PubMedCrossRefGoogle Scholar
  39. Tucker R. P., Binder L. I., and Matus A. I. (1988) Neuronal microtubule-associated proteins in the embryonic avian spinal cord.J. Comp. Neurol. 271, 44–55.PubMedCrossRefGoogle Scholar
  40. Ulloa L., Montejo de Garcini E., Gomez-Ramos P., Moran M. A., and Avila J. (1994) Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer's disease patients.Mol. Brain Res. 26, 113–122.PubMedCrossRefGoogle Scholar
  41. Yamada M., Wada Y., Tsukagoshi H., Otomo E-I., and Hayakawa M. (1988) A quantitative Golgi study of basal dendrites of hippocampal CA1 pyramidal cells in senile dementia of Alzhemier type.J. Neurol. Neurosurg. Psych. 51, 1088–1090.Google Scholar
  42. Yamada T., McGeer P. L., and McGeer E. G. (1992) Appearance of paired nucleated, Tau-positive glia in patients with progressive supranuclear palsy brain tissue.Neurosci. Lett. 135, 99–102.PubMedCrossRefGoogle Scholar
  43. Yamamoto K., Morimoto K., and Yanagihara T. (1986) Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectron microscopic investigation.Brain Res. 384, 1–10.PubMedCrossRefGoogle Scholar
  44. Yanagihara T., Brengman J. M., and Mushynski W. E. (1990) Differential vulnerability of microtubule components in cerebral ischemia.Acta Neuropathol. 80, 499–505.PubMedCrossRefGoogle Scholar
  45. Yen S. H., Dickson D. W., Crowe A., Butler M., and Shelanski M. L. (1987) Alzheimer's neurofibrillary tangles contain unique epitopes in common with heat-stable microtubule-associated proteins Tau and MAP2.Am. J. Pathol. 126, 81–91.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  1. 1.Wellcome Surgical Institute and Hugh Fraser Neuroscience LaboratoriesUniversity of GlasgowGlasgowUK

Personalised recommendations