Molecular and Chemical Neuropathology

, Volume 29, Issue 2–3, pp 169–179 | Cite as

Brain lysosomal hydrolases in neuronal ceroid-lipofuscinoses

  • Vidudala V. T. S. Prasad
  • Raju K. Pullarkat


Although the neuronal ceroid-lipofuscinoses (NCLs) are often referred to as lysosomal storage disorders, information on brain lysosomal hydrolases in NCLs is not available. We have determined the specific activities of several acid hydrolases in postmortem brain gray matter of infantile (INCL), late infantile (LINCL), juvenile (JNCL), and adult (ANCL) forms of NCL, patients affected with other neurological disorders (ON), and normal controls. The specific activities of β-hexosaminidase A and B were significantly high in JNCL gray matter, whereas in LINCL, the increase is significant only in β-hexosaminidase compared to the controls. A significant increase in the activities of α-mannosidase, β-glucuronidase, and acid phosphatase was also observed in LINCL and JNCL patients compared to the control values. β-galactosidase activity was also found to be elevated in JNCL brains over the controls. In contrast, activities of β-glucosidase and sialidase appeared to be lowered in INCL and LINCL. On the other hand, α-fucosidase, β-mannosidase, and sulfatase were unaffected in NCLs brains. Thus, the present data indicate NCLs related abnormalities in some of the acid hydrolases in brain gray matter, which are primarily glycoproteins of lysosomal origin. These data in conjunction with the reported association of sphingolipid activator proteins (SAP) A and D and lysosomal glycoproteins with NCL storage bodies imply abberations in the glycoconjugate metabolism and lysosomal function.

Index Entries

Neuronal ceroid-lipofuscinoses Batten disease human brain hydrolases glycosidases β-hexosaminidase β-glucuronidase acid phosphatase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annunziata P. and Federcio A. (1981) Brain glycosidase in Creutzfeldt-Jakob disease.J. Neurol. Sci. 49, 325–328.PubMedCrossRefGoogle Scholar
  2. Armstrong D., Siakotos A., Koppang N., and Connole E. (1978) Studies on the retina and pigment epithelium in hereditary canine ceroid lipofuscinosis. 1. The distribution of enzymes in the whole retina and pigment epithelium.Invest. Ophthalmol. Vis. Sci. 17, 608–617.PubMedGoogle Scholar
  3. Barret A. J. and Heath M. F. (1977) Lysosomal enzymes, inLysosomes; a Laboratory Handbook (Dingle J. T., ed.), Elsevier, Amsterdam, pp. 20–145.Google Scholar
  4. Bayleran J., Hecktman P. and Saray W. (1984) Synthesis of 4-methylumbelliferyl-β-d-N-acetylglucosamine-6-sulfate and its use in classification of GM2 gangliosidosis genotypes.Clin Chim Acta 143, 73–89.PubMedCrossRefGoogle Scholar
  5. Brady R. O., O’Brien J. H., Bradley, R. M., and Gal A. E. (1970) Sphingolipid hydrolases in brain tissue of patients with generalized gangliosidosis.Biochim. Biophys. Acta 210, 193–195.PubMedGoogle Scholar
  6. Callen D. F., Baker E., Lane S., Nancarrow J., Thompson A., Whitemore S. A., MacLennan D. H., Berger R., Cherif D., Jarvela I., Peltonen L., Sutherland G. R. and Gardiner R. M. (1991) Regional mapping of the Batten disease locus (CLN3) to human chromosome 16p12.Am. J. Med. Genet. 49, 1372–1377.Google Scholar
  7. Conzelmann E. and Sandhoff K. (1987) Glycolipid and glycoprotein degradation, inAdvances in Enzymology, vol. 60. (Meister A., ed.), John Wiley, New York, pp. 90–216.Google Scholar
  8. Den Tandt W. R. and Hooghwinkel G. J. (1980) Brain lysosomal enzymes in generalized gangliosidosis and metachromatic leukodystrophy.Acta Neurol. 2, 10–14.Google Scholar
  9. Ezaki J., Wolfe L. S., Higuti T., Ishidoh K., and Kominami E. (1995a) Specific delay of degradation of mitochondrial ATP synthase subunit c in late infantile neuronal lipofuscinosis (Batten disease).J. Neurochem. 64, 733–741.PubMedCrossRefGoogle Scholar
  10. Ezaki J., Wolfe L. S., Ishidoh K., and Kominami E. (1995b) Abnormal degradative pathway of mitochondrial ATP in late infantile neuronal lipofuscinosis (Batten disease).Am. J. Med. Genet. 57, 254–259.PubMedCrossRefGoogle Scholar
  11. Faisal Khan K. M., Brooks S. S., and Pullarkat R. K. (1995) Abnormal acid phosphatases in neuronal ceroid-lipofuscinoses.Am. J. Med. Genet. 57, 285–289.CrossRefGoogle Scholar
  12. Fearnley I. M., Walker J., Martinus R. D., Jolly R. D., Kirkland K. B., Shaw G. J., and Palmer D. N. (1990) The sequence of the major protein stored in ovine ceroid lipofuscinosis is identical with that of the dicyclohexylcarbodiimide-reactive proteolipid of mitochondrial ATP synthase.Biochem. J. 268, 751–758.PubMedGoogle Scholar
  13. Furst W. and Sandhoff K. (1992) Activator proteins and topology of lysosomal sphingolipid catabolism.Biochim. Biophys. Acta 1126, 1–16.PubMedGoogle Scholar
  14. Gieselmann V. (1995) Lysosomal storage diseases.Biochim. Biophys. Acta 1270, 103–136.PubMedGoogle Scholar
  15. Hall N. A. and Patrick A. D. (1988) Accumulation of dolichol linked oligosaccharides in ceroid-lipofuscinosis (Batten disease).Am. J. Med. Genet. (Suppl).5, 221–232.CrossRefGoogle Scholar
  16. Hall N. A., Lake B. D., Dewji N., and Patrick A. D. (1991) Lysosomal storage of subunit c of mitochondrial ATP synthase in Batten’s disease (Ceroidlipofuscinosis).Biochem. J. 275, 211–223.Google Scholar
  17. Haltia M., Rapola J., and Santavuori P. (1973) Infantile type of socalled neuronal ceroid-lipofuscinosis. Histological and electron microscopic studies.Acta Neuropathol. 26, 157–170.PubMedCrossRefGoogle Scholar
  18. Hirsch H. E. (1968) Acid phosphatase localisation in individual neurons by quantitative histochemical method.J. Neurochem 15, 123–130.PubMedCrossRefGoogle Scholar
  19. Hirsch H. E. (1969) Localisation of arylsulphatase in neurons.J. Neurochem. 16, 1147–1155.PubMedCrossRefGoogle Scholar
  20. Jarvela I., Schleutker J., Haataja L., Santavuori P., Puhakka L., Manninen T., Palotie A., Sandkuijl L. A., Renlund M., White R., Aula P., and Peltonen L. (1991) Infantile form of neuronal ceroid-lipofuscinosis (CLN1) maps to the short arm of chromosome 1.Genomics 9, 170–173.PubMedCrossRefGoogle Scholar
  21. Kominami E., Ezaki J., Muno D., Ishido K., Ueno T., and Wolfe L. S. (1992) Specific storage of subunit c of mitochondrial ATP synthase in lysosomes of neuronal ceroid lipofuscinosis (Batten disease).J. Biochem 111, 278–282.PubMedGoogle Scholar
  22. Krusius T., Viitala J., Palo J., And Maury C. P. J. (1986) Enrichment of high mannose-type glycans in nervous tissue glycoproteins in neuronal ceroidlipofuscinosis.J. Neurol. Sci. 72, 1–10.PubMedCrossRefGoogle Scholar
  23. Mazurkiewicz J. E., Callahan L. M., Swash M., Martin J. E., and Messer A. (1993) Cytoplasmic inclusions in spinal neurons of the motor neuron degeneration (mnd) mouse.J. Neurol. Sci. 116, 59–66.PubMedCrossRefGoogle Scholar
  24. Moroni-Rawson P., Palmer D. N., Jolly R. D., and Jordan T. W. (1995) Variant proteins in ovine ceroid-lipofuscinosis.Am. J. Med. Genet. 57, 279–284.PubMedCrossRefGoogle Scholar
  25. Plum C. M. (1977) Acid phosphatase activity in lymphocytes from patients with Spielmeyer-Vogt-Batten’s syndrome.J. Clin. Chem. Clin. Biochem. 15, 645–648.PubMedGoogle Scholar
  26. Pullarkat R. K. and Zawitosky S. E. (1993) Glycoconjugate abnormalities in the ceroid-lipofuscinoses.J. Inherited Metab. Dis. 16, 317–322.PubMedCrossRefGoogle Scholar
  27. Pullarkat R. K., Kim K. S., Sklower S. L., and Patel V. M. (1988) Oligosaccharyl diphosphodolichols in the ceroid-lipofuscinoses.Am. J. Med. Gnet. (Suppl)5, 243–251.CrossRefGoogle Scholar
  28. Rider J. A. and Rider D. L. (1988) Batten disease: past, present and future.Am. J. Med. Genet. (Suppl)5, 21–26.CrossRefGoogle Scholar
  29. Sinha A. K. and Rose S. P. R. (1972) Compartmentation of lysosomes in neurons and neuropil and a new neuronal marker.Brain Res. 39, 181–196.PubMedCrossRefGoogle Scholar
  30. Tyynela J., Baumann M., Henseler M., Sandhoff K., and Haltia M. (1995a) Sphingolipid activator proteins (SAPs) are stored together with glycosphingolipids in the infantile neuronal ceroid-lipofuscinosis.Am. J. Med. Genet. 57, 294–297.PubMedCrossRefGoogle Scholar
  31. Tyynela J., Baumann M., Henseler M, Sandhoff K., and Haltia M. (1995b) Sphingolipid activator proteins in the neuronal ceroid-lipofuscinoses: an immunological study.Acta Neuropathol. 89, 391–398.PubMedCrossRefGoogle Scholar
  32. Vesa J., Hellesten E., Verkruyse L. A., Camp L. A., Rapola J., Santavouri P., Hofmann S. L., and Peltonen L. (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis.Nature 376, 584–587.PubMedCrossRefGoogle Scholar
  33. Wisniewski K. E., Rapin I., and Heaney-Kieras J. (1988) Clinico-pathological variability in the childhood neuronal ceroid-lipofuscinoses and new observations on glycoprotein abnormalities.Am. J. Med. Genet. (Suppl)5, 27–46.CrossRefGoogle Scholar
  34. Zeman W. (1976) The neuronal ceroid-lipofuscinoses, inProgress Neuropathology, vol. 3 (Zimmermann H. M., ed.), Grune and Stratton, New York, pp. 203–223.Google Scholar
  35. Zeman W., Donahue S., Dyken P., and Green J. (1970) The neuronal ceroid-lipofuscinoses (Batten-Vogt syndrome), inHandbook of Clinical Neurology, vol. 10,Leukodystrophies and Poliodystrophies, (Vinken P. J. and Bruyn G. W., eds.), North Holland Publishing Co., Amsterdam, pp. 588–679.Google Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Vidudala V. T. S. Prasad
    • 1
  • Raju K. Pullarkat
    • 1
  1. 1.New York State Institute for Basic Research in Developmental Disabilities, Department of NeurochemistryNew York State Office of Mental Retardation and Developmental DisabilitiesStaten Island

Personalised recommendations