Advertisement

Metallurgical and Materials Transactions B

, Volume 2, Issue 11, pp 3073–3077 | Cite as

Thermal microstresses in beryllium and other HCP materials

  • R. W. Armstrong
  • N. R. Borch
Mechanical Behavior

Abstract

The thermal stresses that may develop due to crystal anisotropy within the microstructure of beryllium and certain other hcp materials are described. The magnitude of the unrelaxed thermal stress in polycrystalline beryllium is estimated numerically. The calculated values for the local thermal stresses that might occur in polycrystalline beryllium are comparable to the bulk stresses that are measured for yielding and fracture. The possible influence of these stresses on the initiation of cleavage cracks in rolled beryllium sheet and in extruded beryllium plate is described.

Keywords

Beryllium Polycrystalline Beryllium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Malygin and V. A. Likhachev:Zavod. Lab., 1966, vol. 32, p. 335.Google Scholar
  2. 2.
    A. A. Denton:Met. Rev., 1966, vol. 11, p. 1.Google Scholar
  3. 3.
    W. J. McG. Tegart:J. Inst. Met., 1962, vol. 91, p. 99.Google Scholar
  4. 4.
    F. J. P. Clarke:Acta Met., 1964, vol. 12, p. 139.CrossRefGoogle Scholar
  5. 5.
    W. Boas and R. W. K. Honeycombe:Proc. Roy. Soc. (London), 1946, vol. A186, p. 57.CrossRefGoogle Scholar
  6. 6.
    J. F. Nye:Physical Properties of Crystals, chap. VIII, Oxford University Press, London, 1957.Google Scholar
  7. 7.
    A. Reuss:Z. Angew. Math. Mech., 1929, vol. 9, p. 49.CrossRefGoogle Scholar
  8. 8.
    H. B. Huntington:The Elastic Constants of Crystals, p. 105, Academic Press, New York, 1958.Google Scholar
  9. 9.
    F. László:J. Iron Steel Inst., 1944, vol. 150, p. 183.Google Scholar
  10. 10.
    American Institute of Physics Handbook, p. 2–53, McGraw-Hill Book Co., New York, 1963.Google Scholar
  11. 11.
    E. Schmid and W. Boas:Plasticity of Crystals, p. 192, Hughes Ltd., London, 1950.Google Scholar
  12. 12.
    J. F. Smith and C. L. Arbogast:J. Appl. Phys. 1960, vol. 31, p. 99.CrossRefGoogle Scholar
  13. 13.
    P. Gordon:J. Appl. Phys., 1949, vol. 20, p. 908.CrossRefGoogle Scholar
  14. 14.
    G. G. Bentle:J. Am. Ceram. Soc., 1966, vol. 49, p. 125.CrossRefGoogle Scholar
  15. 15.
    S. M. Lang:Acta Cryst., 1965, vol. 19, p. 210.CrossRefGoogle Scholar
  16. 16.
    American Institute of Physics Handbook, pp. 4–66, McGraw-Hill Book Co., New York, 1963.Google Scholar
  17. 17.
    E. Schmid and W. Boas:Plasticity of Crystals, p. 130, Hughes Ltd., London, 1950.Google Scholar
  18. 18.
    R. Hill:Proc. Phys. Soc. (London), 1952, vol. A65, p. 349.CrossRefGoogle Scholar
  19. 19.
    R. L. Moment:Trans. TMS-AIME, 1967, vol. 239, p. 542.Google Scholar
  20. 20.
    D. H. Chung and W. R. Buessem:J. Appl. Phys., 1967, vol. 38, p. 2010.CrossRefGoogle Scholar
  21. 21.
    B. L. Averbach, R. Kaplow, D. J. Silversmith, and R. Currat: Tech. Rept. AFML-TR-70-15. Dept. of Metallurgy and Materials Science, Massachusetts Institute of Technology, Cambridge, Mass., January, 1970.Google Scholar
  22. 22.
    N. N. Davidenkov, B. A. Sidorov, L. M. Shestopalov, N. F. Mironov, N. M. Bogograd, L. A. Izhvanov, and S. B. Kostogarov:At. Energ. (USSR), 1965, vol. 18, p. 608.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1971

Authors and Affiliations

  • R. W. Armstrong
    • 1
  • N. R. Borch
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MarylandCollege Park
  2. 2.Metallurgical Innovations, Inc.Dublin

Personalised recommendations