Skip to main content
Log in

Thermal microstresses in beryllium and other HCP materials

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The thermal stresses that may develop due to crystal anisotropy within the microstructure of beryllium and certain other hcp materials are described. The magnitude of the unrelaxed thermal stress in polycrystalline beryllium is estimated numerically. The calculated values for the local thermal stresses that might occur in polycrystalline beryllium are comparable to the bulk stresses that are measured for yielding and fracture. The possible influence of these stresses on the initiation of cleavage cracks in rolled beryllium sheet and in extruded beryllium plate is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Malygin and V. A. Likhachev:Zavod. Lab., 1966, vol. 32, p. 335.

    CAS  Google Scholar 

  2. A. A. Denton:Met. Rev., 1966, vol. 11, p. 1.

    Google Scholar 

  3. W. J. McG. Tegart:J. Inst. Met., 1962, vol. 91, p. 99.

    Google Scholar 

  4. F. J. P. Clarke:Acta Met., 1964, vol. 12, p. 139.

    Article  Google Scholar 

  5. W. Boas and R. W. K. Honeycombe:Proc. Roy. Soc. (London), 1946, vol. A186, p. 57.

    Article  CAS  Google Scholar 

  6. J. F. Nye:Physical Properties of Crystals, chap. VIII, Oxford University Press, London, 1957.

    Google Scholar 

  7. A. Reuss:Z. Angew. Math. Mech., 1929, vol. 9, p. 49.

    Article  CAS  Google Scholar 

  8. H. B. Huntington:The Elastic Constants of Crystals, p. 105, Academic Press, New York, 1958.

    Google Scholar 

  9. F. László:J. Iron Steel Inst., 1944, vol. 150, p. 183.

    Google Scholar 

  10. American Institute of Physics Handbook, p. 2–53, McGraw-Hill Book Co., New York, 1963.

  11. E. Schmid and W. Boas:Plasticity of Crystals, p. 192, Hughes Ltd., London, 1950.

    Google Scholar 

  12. J. F. Smith and C. L. Arbogast:J. Appl. Phys. 1960, vol. 31, p. 99.

    Article  CAS  Google Scholar 

  13. P. Gordon:J. Appl. Phys., 1949, vol. 20, p. 908.

    Article  CAS  Google Scholar 

  14. G. G. Bentle:J. Am. Ceram. Soc., 1966, vol. 49, p. 125.

    Article  CAS  Google Scholar 

  15. S. M. Lang:Acta Cryst., 1965, vol. 19, p. 210.

    Article  CAS  Google Scholar 

  16. American Institute of Physics Handbook, pp. 4–66, McGraw-Hill Book Co., New York, 1963.

  17. E. Schmid and W. Boas:Plasticity of Crystals, p. 130, Hughes Ltd., London, 1950.

    Google Scholar 

  18. R. Hill:Proc. Phys. Soc. (London), 1952, vol. A65, p. 349.

    Article  Google Scholar 

  19. R. L. Moment:Trans. TMS-AIME, 1967, vol. 239, p. 542.

    CAS  Google Scholar 

  20. D. H. Chung and W. R. Buessem:J. Appl. Phys., 1967, vol. 38, p. 2010.

    Article  CAS  Google Scholar 

  21. B. L. Averbach, R. Kaplow, D. J. Silversmith, and R. Currat: Tech. Rept. AFML-TR-70-15. Dept. of Metallurgy and Materials Science, Massachusetts Institute of Technology, Cambridge, Mass., January, 1970.

    Google Scholar 

  22. N. N. Davidenkov, B. A. Sidorov, L. M. Shestopalov, N. F. Mironov, N. M. Bogograd, L. A. Izhvanov, and S. B. Kostogarov:At. Energ. (USSR), 1965, vol. 18, p. 608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

N. R. Borch, formerly with Lawrence Radiatior. Laboratory, University of California, Livermore, Calif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, R.W., Borch, N.R. Thermal microstresses in beryllium and other HCP materials. Metall Trans 2, 3073–3077 (1971). https://doi.org/10.1007/BF02814957

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814957

Keywords

Navigation