Metallurgical Transactions

, Volume 2, Issue 9, pp 2701–2709 | Cite as

Observations on the β→ζ m massive transformation in two-phase (β+ζ) alloys of the Cu−Ga−Ge system

  • A. J. Perkins
  • T. B. Massalski


Optical metallography, transmission electron microscopy, and thermal arrest measurements, have been used to study the transformation, on quenching, of an initial two-phase (β+ζ) microstructure, in the Cu−Ga−Ge system. The two phases bcc (β) and hcp (ζ) coexist in a narrow temperature range near 635°C in a ternary Cu-21.0Ga-1.5Ge alloy. The microstructure at high temperature typically consists of β regions outlining ζ grains. Upon rapid quenching of such a structure, the hexagonal ζ grains remain stable, but each β region transforms via a massive transformation to an hcp ζ m structure without change of composition. Growth of such ζ m grains takes place only from certain original β/ζ boundaries, but not from others. A ξ m grain adopts the same crystallographic orientation as the adjacent ζ grain at which it initiated. However, the coherent ζ/ζ m “boundary” which develops exhibits a lattice parameter discontinuity across it, due to the difference in composition. The process amounts to massive growth without conventional nucleation. The significance of these findings, particularly in terms of the desirability of the presence or absence of certain initial crystallographic relationships between the β and ζ grains is discussed.


Misfit Dislocation Massive Transformation Impact Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. B. Massalski: inPlase Transformations. p. 433, ASM, Metals Park, Ohio, 1970.Google Scholar
  2. 2.
    E. B. Hawbolt and T. B. Massalski:Met. Trans., 1970, vol. 1, p. 2315.CrossRefGoogle Scholar
  3. 3.
    G. A. Sargent, L. Delacy, and T. B. Massalski:Acta Met., 1968, vol. 16, p. 723.CrossRefGoogle Scholar
  4. 4.
    K. H. G. Ashbee, L. F. Vassamillet, and T. B. Massalski:Acta Met., 1967, vol. 15, p. 181.CrossRefGoogle Scholar
  5. 5.
    T. B. Massalski:Acta Met., 1958, vol. 6, p. 243.CrossRefGoogle Scholar
  6. 6.
    H. Gleiter and T. B. Massalski:Acta Met., 1970, vol. 18, p. 649.CrossRefGoogle Scholar
  7. 7.
    L. Delacy, G. A. Sargent, and T. B. Massalski:Phil. Mag., 1968, vol. 17, p. 983.CrossRefGoogle Scholar
  8. 8.
    A. J. Perkins, A. Goldberg, and T. B. Massalski: Lawrence Radiation Laboratory, Livermore. California, unpublished research, 1970.Google Scholar
  9. 9.
    J. E. Kittl and T. B. Massalski:Acta Met., 1967, vol. 15, p. 161.CrossRefGoogle Scholar
  10. 10.
    L. Delacy, A. J. Perkins, and T. B. Massalski: Mellon Institute of Science, Carnegie-Mellon University, Pittsburgh, Pa., unpublished research, 1971.Google Scholar
  11. 11.
    L. E. Murr, R. J. Horylev, and W. N. Lin:Phil. Mag., 1970, vol. 22, p. 515.CrossRefGoogle Scholar
  12. 12.
    J. D. Ayers and T. B. Massalski: Mellon Institute of Science, Carnegie-Mellon University, Pittsburgh, Pa., unpublished research, 1970.Google Scholar
  13. 13.
    K. T. Aust and J. W. Rutter: inRecovery and Recrystallization of Metals, L. Himmel, ed., p. 131. Interscience, N.Y., 1962.Google Scholar
  14. 14.
    J. W. Rutter and K. T. Aust:Acta Met., 1965, vol. 13, p. 181.CrossRefGoogle Scholar
  15. 15.
    H. Gleiter:Acta Met., 1969, vol. 17, p. 853.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1971

Authors and Affiliations

  • A. J. Perkins
    • 1
  • T. B. Massalski
    • 1
  1. 1.Mellon Institute of ScienceCarnegie-Mellon UniversityPittsburgh

Personalised recommendations