Skip to main content
Log in

Substructure strengthening in dispersion-strengthened nickel alloys

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Pure nickel, 80 pct Ni-20 pct Cr, 98 pct Ni-2 pct ThO2, and 78 pct Ni-20 pct Cr-2 pct ThO2 were studied in a wide range of thermomechanical conditions to identify strengthening mechanisms in the dispersion-strengthened materials. An X-ray line profile technique was used to determine the distribution of lattice strain, the crystallite domain size and the incidence of twins and stacking faults. Transmission electron microscopy was carried out, and tensile tests were done at room temperature and at an elevated temperature. It was found that cold deformation of Ni−ThO2 did not produce lattice strains as large as was the case with pure nickel and Ni−Cr. However, deformation of Ni−Cr−ThO2 did generate high lattice strains, due it is thought to the influence of chromium on cross-slip. The materials containing high lattice strains recrystallized more readily on annealing or testing at high temperature. It was concluded that room temperature strength was related to domain size without regard to composition in the series investigated. Strengthening by particle-dislocation interaction was not thought to be applicable when the domain size was small compared to the interparticle spacing, or at elevated temperatures. High temperature strength was determined primarily by the presence of a polygonized dislocation substructure which was stabilized by the thoria dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Preston and N. J. Grant:Trans. TMS-AIME, 1961, vol. 221, pp. 164–73.

    CAS  Google Scholar 

  2. J. E. White and R. D. Carnahan:Trans. TMS-AIME, 1964, vol. 230, pp. 1298–306.

    Google Scholar 

  3. L. L. J. Chin and N. J. Grant:Powder Met., 1967, ser. 20, vol. 10, pp. 344–57.

    CAS  Google Scholar 

  4. L. E. Muir, P. J. Smith, and C. M. Gilmore:Phil. Mag., 1968, ser. 145, vol. 17, pp. 89–106.

    Article  Google Scholar 

  5. M. von Heimendahl and G. Thomas:Trans. TMS-AIME, 1964, vol. 230, pp. 1520–28.

    CAS  Google Scholar 

  6. B. A. Wilcox and A. H. Clauer: Rept. No. NASA CR-72367, Battelle Memorial Institute, 1968.

  7. E. O. Hall:Proc. Phys. Soc., 1951, vol. B 64, p. 747.

    Article  Google Scholar 

  8. N. J. Petch:J. Iron Steel Inst., 1953, vol. 174, p. 25.

    CAS  Google Scholar 

  9. Du Pont Metal Products, TD NiC, Interim Data Sheet, 1966.

  10. Du Pont Metal Products, TD Nickel, Data Sheet No. A41076, 1965.

  11. D. Webster:Trans. ASM, 1969, vol. 62, pp. 936–48.

    CAS  Google Scholar 

  12. C. S. Barrett:Structure of Metals, 2nd ed., McGraw-Hill Book Co., New York, 1952.

    Google Scholar 

  13. B. D. Cullity:Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Reading, Mass., 1959.

    Google Scholar 

  14. R. Grierson and L. J. Bonis:Trans. TMS-AIME, 1967, vol. 239, pp. 622–26.

    CAS  Google Scholar 

  15. B. E. Warren:Prog. Metal Phys., vol. 8, pp. 147–202, Pergamon Press, New York, 1959.

    Google Scholar 

  16. M. A. Clegg and J. A. Lund:Advan. X-Ray Anal., vol. 14, pp. 408–32, Plenum Press, New York, 1971.

    Google Scholar 

  17. A. R. Stokes:Proc. Phys. Soc., 1948, vol. 61, pp. 382–91.

    Article  CAS  Google Scholar 

  18. C. N. J. Wanger:Local Atomic Arrangement Studied by X-Ray Diffraction, MS-AIME, vol. 36, pp. 219–69, Gordon and Breach, New York, 1966.

    Google Scholar 

  19. C. M. Mitchell:Advan. X-Ray Anal., vol. 12, pp. 354–71, Plenum Press, New York, 1969.

    Google Scholar 

  20. W. A. Rachinger:J. Sci. Instr., 1948, vol. 25, pp. 254–58.

    Article  Google Scholar 

  21. G. K. Williamson and R. E. Smallman:Phil. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  22. M. J. Klein and R. A. Huggins:Acta. Met., 1962, vol. 10, pp. 55–62.

    Article  Google Scholar 

  23. J. L. Brimhall and R. A. Huggins:Trans. TMS-AIME, 1965, vol. 233, pp. 1076–84.

    CAS  Google Scholar 

  24. K. M. Olsen, C. F. Larkin, and P. H. Schmitt, Jr.:Trans. ASM, 1961, vol. 53, pp. 349–58.

    CAS  Google Scholar 

  25. F. I. Grace and M. C. Inman:Metallography, 1970, ser. 1, vol. 3, pp. 89–98.

    Article  CAS  Google Scholar 

  26. B. E. P. Beeston and L. K. France:J. Inst. Metals, 1968, vol. 96, pp. 105–07.

    CAS  Google Scholar 

  27. A. Akhtar: Centre for Material Research Department of Metallurgy, University of British Columbia, Prog. Rept., August 1970.

  28. R. J. Price and A. Kelly:Acta. Met., 1962, vol. 10, pp. 980–82.

    Article  CAS  Google Scholar 

  29. M. F. Ashby:Phil. Mag., 1966, ser. 132, vol. 14, pp. 1157–77.

    Article  CAS  Google Scholar 

  30. A. Kelly and R. B. Nicholson:Prog. Mater. Sci., vol. 10, pp. 149–391, Pergamon Press, New York, 1963.

    Google Scholar 

  31. M. F. Ashby and G. C. Smith:Phil. Mag., 1960, ser. 5, vol. 8, p. 299.

    Google Scholar 

  32. J. Weertman and J. R. Weertman:Elementary Dislocation Theory, p. 52, Macmillan Co., New York, 1964.

    Google Scholar 

  33. D. Dew-Hughes and W. D. Robertson:Acta. Met., 1960, vol. 8, pp. 147–55.

    Article  CAS  Google Scholar 

  34. R. J. Towner:Trans. TMS-AIME, 1964, vol. 230, pp. 505–11.

    Google Scholar 

  35. L. Raymond and J. P. Neuman:Intern. J. of Pwd. Met., 1969, vol. 5(2), pp. 97–104.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The paper is based upon a thesis submitted by M. A. CLEGG in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the University of British Columbia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clegg, M.A., Lund, J.A. Substructure strengthening in dispersion-strengthened nickel alloys. Metall Trans 2, 2495–2507 (1971). https://doi.org/10.1007/BF02814888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814888

Keywords

Navigation