Metallurgical Transactions

, Volume 2, Issue 9, pp 2495–2507 | Cite as

Substructure strengthening in dispersion-strengthened nickel alloys

  • M. A. Clegg
  • J. A. Lund
Mechanical Behavior


Pure nickel, 80 pct Ni-20 pct Cr, 98 pct Ni-2 pct ThO2, and 78 pct Ni-20 pct Cr-2 pct ThO2 were studied in a wide range of thermomechanical conditions to identify strengthening mechanisms in the dispersion-strengthened materials. An X-ray line profile technique was used to determine the distribution of lattice strain, the crystallite domain size and the incidence of twins and stacking faults. Transmission electron microscopy was carried out, and tensile tests were done at room temperature and at an elevated temperature. It was found that cold deformation of Ni−ThO2 did not produce lattice strains as large as was the case with pure nickel and Ni−Cr. However, deformation of Ni−Cr−ThO2 did generate high lattice strains, due it is thought to the influence of chromium on cross-slip. The materials containing high lattice strains recrystallized more readily on annealing or testing at high temperature. It was concluded that room temperature strength was related to domain size without regard to composition in the series investigated. Strengthening by particle-dislocation interaction was not thought to be applicable when the domain size was small compared to the interparticle spacing, or at elevated temperatures. High temperature strength was determined primarily by the presence of a polygonized dislocation substructure which was stabilized by the thoria dispersion.


ThO2 High Lattice Strain Polygonized Dislocation Substructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Preston and N. J. Grant:Trans. TMS-AIME, 1961, vol. 221, pp. 164–73.Google Scholar
  2. 2.
    J. E. White and R. D. Carnahan:Trans. TMS-AIME, 1964, vol. 230, pp. 1298–306.Google Scholar
  3. 3.
    L. L. J. Chin and N. J. Grant:Powder Met., 1967, ser. 20, vol. 10, pp. 344–57.Google Scholar
  4. 4.
    L. E. Muir, P. J. Smith, and C. M. Gilmore:Phil. Mag., 1968, ser. 145, vol. 17, pp. 89–106.CrossRefGoogle Scholar
  5. 5.
    M. von Heimendahl and G. Thomas:Trans. TMS-AIME, 1964, vol. 230, pp. 1520–28.Google Scholar
  6. 6.
    B. A. Wilcox and A. H. Clauer: Rept. No. NASA CR-72367, Battelle Memorial Institute, 1968.Google Scholar
  7. 7.
    E. O. Hall:Proc. Phys. Soc., 1951, vol. B 64, p. 747.CrossRefGoogle Scholar
  8. 8.
    N. J. Petch:J. Iron Steel Inst., 1953, vol. 174, p. 25.Google Scholar
  9. 9.
    Du Pont Metal Products, TD NiC, Interim Data Sheet, 1966.Google Scholar
  10. 10.
    Du Pont Metal Products, TD Nickel, Data Sheet No. A41076, 1965.Google Scholar
  11. 11.
    D. Webster:Trans. ASM, 1969, vol. 62, pp. 936–48.Google Scholar
  12. 12.
    C. S. Barrett:Structure of Metals, 2nd ed., McGraw-Hill Book Co., New York, 1952.Google Scholar
  13. 13.
    B. D. Cullity:Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Reading, Mass., 1959.Google Scholar
  14. 14.
    R. Grierson and L. J. Bonis:Trans. TMS-AIME, 1967, vol. 239, pp. 622–26.Google Scholar
  15. 15.
    B. E. Warren:Prog. Metal Phys., vol. 8, pp. 147–202, Pergamon Press, New York, 1959.Google Scholar
  16. 16.
    M. A. Clegg and J. A. Lund:Advan. X-Ray Anal., vol. 14, pp. 408–32, Plenum Press, New York, 1971.Google Scholar
  17. 17.
    A. R. Stokes:Proc. Phys. Soc., 1948, vol. 61, pp. 382–91.CrossRefGoogle Scholar
  18. 18.
    C. N. J. Wanger:Local Atomic Arrangement Studied by X-Ray Diffraction, MS-AIME, vol. 36, pp. 219–69, Gordon and Breach, New York, 1966.Google Scholar
  19. 19.
    C. M. Mitchell:Advan. X-Ray Anal., vol. 12, pp. 354–71, Plenum Press, New York, 1969.Google Scholar
  20. 20.
    W. A. Rachinger:J. Sci. Instr., 1948, vol. 25, pp. 254–58.CrossRefGoogle Scholar
  21. 21.
    G. K. Williamson and R. E. Smallman:Phil. Mag., 1956, vol. 1, pp. 34–46.CrossRefGoogle Scholar
  22. 22.
    M. J. Klein and R. A. Huggins:Acta. Met., 1962, vol. 10, pp. 55–62.CrossRefGoogle Scholar
  23. 23.
    J. L. Brimhall and R. A. Huggins:Trans. TMS-AIME, 1965, vol. 233, pp. 1076–84.Google Scholar
  24. 24.
    K. M. Olsen, C. F. Larkin, and P. H. Schmitt, Jr.:Trans. ASM, 1961, vol. 53, pp. 349–58.Google Scholar
  25. 25.
    F. I. Grace and M. C. Inman:Metallography, 1970, ser. 1, vol. 3, pp. 89–98.CrossRefGoogle Scholar
  26. 26.
    B. E. P. Beeston and L. K. France:J. Inst. Metals, 1968, vol. 96, pp. 105–07.Google Scholar
  27. 27.
    A. Akhtar: Centre for Material Research Department of Metallurgy, University of British Columbia, Prog. Rept., August 1970.Google Scholar
  28. 28.
    R. J. Price and A. Kelly:Acta. Met., 1962, vol. 10, pp. 980–82.CrossRefGoogle Scholar
  29. 29.
    M. F. Ashby:Phil. Mag., 1966, ser. 132, vol. 14, pp. 1157–77.CrossRefGoogle Scholar
  30. 30.
    A. Kelly and R. B. Nicholson:Prog. Mater. Sci., vol. 10, pp. 149–391, Pergamon Press, New York, 1963.Google Scholar
  31. 31.
    M. F. Ashby and G. C. Smith:Phil. Mag., 1960, ser. 5, vol. 8, p. 299.Google Scholar
  32. 32.
    J. Weertman and J. R. Weertman:Elementary Dislocation Theory, p. 52, Macmillan Co., New York, 1964.Google Scholar
  33. 33.
    D. Dew-Hughes and W. D. Robertson:Acta. Met., 1960, vol. 8, pp. 147–55.CrossRefGoogle Scholar
  34. 34.
    R. J. Towner:Trans. TMS-AIME, 1964, vol. 230, pp. 505–11.Google Scholar
  35. 35.
    L. Raymond and J. P. Neuman:Intern. J. of Pwd. Met., 1969, vol. 5(2), pp. 97–104.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1971

Authors and Affiliations

  • M. A. Clegg
    • 1
  • J. A. Lund
    • 2
  1. 1.Physical Metallurgy ResearchSherritt Gordon Mines Ltd.Fort SaskatchewanCanada
  2. 2.Department of MetallurgyUniversity of British ColumbiaVancouverCanada

Personalised recommendations