Advertisement

Metallurgical Transactions

, Volume 2, Issue 9, pp 2485–2488 | Cite as

Thermal diffusion in concentrated solid solutions

  • J. P. Stark
Transport Phenomena
  • 57 Downloads

Abstract

The kinetic model of thermal diffusion in crystals is considered for a concentrated multicomponent system. The dependence of the heat of transport upon thermodynamic variables introduces corrective terms which are capable of explaining many of the large heats of transport found in the experimental literature. These terms also appear in the diffusion coefficients for substitutional as well as interstitial solutes; the form for the diffusion coefficient would suggest that diagonal terms in the matrix of diffusion coefficients would be larger than off-diagonal terms in agreement with experiment.

Keywords

Metallurgical Transaction Thermodynamic Variable Jump Frequency Interstitial Solute Activation Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Biermann, D. Heitkamp, and T. S. Lundy:Acta Met., 1965, vol. 13, pp. 71–77.CrossRefGoogle Scholar
  2. 2.
    P. Thernquist and A. Lodding:Z. Naturforsch., 1967, vol. 22a, pp. 837–39; 1966, vol. 21a, pp. 857–60.Google Scholar
  3. 3.
    P. G. Shewmon:Acta Met., 1959, vol. 8, pp. 605–10.CrossRefGoogle Scholar
  4. 4.
    J. G. Shaw and W. A. Oates, data from R. A. Oriani:J. Phys. Chem. Solids, 1969, vol. 30, p. 339.CrossRefGoogle Scholar
  5. 5.
    L. S. Darken and R. A. Oriani:Acta Met., 1954, vol. 2, pp. 841–47.CrossRefGoogle Scholar
  6. 6.
    A. Sawatsky:J. Nucl. Mater., 1960, vol. 2, p. 34.Google Scholar
  7. 7.
    J. Droege: BattelleMem. Inst. Rept., 1961, February, p. 1502.Google Scholar
  8. 8.
    W. Shockley:Phys. Rev., 1953, vol. 91, p. 1563; 1954, vol. 93, p. 345.CrossRefGoogle Scholar
  9. 9.
    A. D. Le Claire:Phys. Rev., 1954, vol. 93, p. 344.CrossRefGoogle Scholar
  10. 10.
    J. A. Brinkman:Phys. Rev., 1954, vol. 93, p. 345.CrossRefGoogle Scholar
  11. 11.
    R. W. Keyes:Phys. Rev., 1954, vol. 94, pp. 1369–70.CrossRefGoogle Scholar
  12. 12.
    A. R. Alnatt and S. A. Rice:J. Chem. Phys., 1960, vol. 33, pp. 573–79.CrossRefGoogle Scholar
  13. 13.
    A. R. Oriani:J. Chem. Phys., 1961, vol. 34, pp. 1773–77.CrossRefGoogle Scholar
  14. 14.
    D. O. Raleigh and A. W. Sommer:J. Chem. Phys., 1962, vol. 36, pp. 381–84.CrossRefGoogle Scholar
  15. 15.
    R. E. Howard and J. R. Manning:J. Chem. Phys., 1962, vol. 36, pp. 919–25.Google Scholar
  16. 16.
    L. A. Girifalco:Phys. Rev., 1962, vol. 128, pp. 2630–34; 1963, vol. 130, pp. 2599–2605; andJ. Chem. Phys., 1963, vol. 39, pp. 2377–81.CrossRefGoogle Scholar
  17. 17.
    H. Wever:Z. Naturf., 1963, vol. 18a, pp. 1215–20.Google Scholar
  18. 18.
    K. Wirtz:Physik Z., 1943, vol. 44, pp. 221–28.Google Scholar
  19. 19.
    John R. Manning:Met. Trans., 1970, vol. 1, pp. 499–505.Google Scholar
  20. 20.
    P. G. Shewmon: “Diffusion in Solids”, pp. 192–93, McGraw-Hill Book Co., New York, 1963.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1971

Authors and Affiliations

  • J. P. Stark
    • 1
  1. 1.Materials Science Laboratory, Department of Mechanical EngineeringThe University of Texas at AustinAustin

Personalised recommendations