Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 108, Issue 1, pp 97–103 | Cite as

Explicit superstring vacua in a background of gravitational waves and dilaton

  • A. Peterman
  • A. Zichichi
Article
  • 23 Downloads

Summary

We present an explicit solution of superstring effective equations, represented by gravitational waves and dilaton backgrounds. Particular solutions will be examined in a forthcoming note.

PACS

11.30.Pb Supersymmetry 

PACS

11.17 Theories of strings and other extended objects 

PACS

04.60 Quantum theory of gravitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Peterman A andZichichi A. Nuovo Cimento A 107 (1994) 333.MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    Calabi E.,Ann. Sci. Ecole Norm. Sup.,12 (1979) 266.MathSciNetGoogle Scholar
  3. [3]
    Alvarez-Gaumé L. andFreedman D. Z.,Commun. Math. Phys.,80 (1981) 443.CrossRefADSGoogle Scholar
  4. [4]
    Alvarez-Gaumé L. andGinsparg P.,Commun. Math. Phys.,102 (1985) 311.CrossRefADSMATHGoogle Scholar
  5. [5]a)
    Spindel P., Sevrin A., Troost W. andvan Proyen A.,Nucl. Phys. B,308 (1988) 662;311 (1988) 465. b)Siegel W.,Phys. Rev. Lett.,69 (1992) 1493. c)Kounnas C.,Phys. Lett. B,321 (1994) 26;CERN-TH.7169/94 (hep-th 9402080);Antoniadis I., Ferrara S. andKounnas C., CERN-TH.7148/94 (hep-th 9402042). d)Berkovits N. andVafa C., HUTP-93/A031;Bastianelli F. andOhta N., NHI-HE 94-10 (hep-th 9402118); withPetersen J., NHI-HE 94-08 (hep-th 9402042); see alsoGOMIS J. andSuzuki H.,Phys. Lett. B,278 (1992);266;Figuerosa-O'Farril J.,Phys. Lett. B,321 (1994) 344.CrossRefADSGoogle Scholar
  6. [6]
    Tseytlin A.,Phys. Lett. B,288 (1992) 279.MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    Tseytlin A.,Nucl. Phys. B,390 (1993) 153.MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    Tseytlin A.,Phys. Rev. D,47 (1993) 3421.MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    Peterman A. andZichichi A.,Nuovo Cimento A,106 (1993) 719.CrossRefADSGoogle Scholar
  10. [10]
    Haagensen P.,Int. J. Mod. Phys. A,5 (1990) 1561;Jack J. andJones, D.,Phys. Lett. B,220 (1989) 176;Grisaru, M. andZanon D.,Phys. Lett. B. 184 (1987) 209.CrossRefADSGoogle Scholar
  11. [11]
    Horowitz G. andSteif A.,Phys. Rev. D,42 (1990) 1950;Rudd R.,Nucl. Phys. B,352 (1991) 489.CrossRefADSGoogle Scholar
  12. [12]
    Kobayashi S. andNomizu K.,Foundation of Differential Geometry, Vol.2 (Wiley Interscience, New York, N.Y.) 1963;Helgason S.,Differential Geometry, Lie Groups and Symmetric Spaces (Academic Press, New York, N.Y.) 1978.Google Scholar
  13. [13]
    Yano K.,Differential Geometry on Complex and Almost Complex Manifolds (McMillan) 1965;Lichnerowicz A.,Théorie globale des connections et des groupes d'holonomie (CNR, Rome) 1962.Google Scholar
  14. [14]a)
    Zhelobenko D.,Compact Lie Groups (AMS, Providence, R.I.) 1973.b), For readers not familiar with complex spaces, we recommend the illuminating lecture byAlvarez-Gaumé L. andFreedman D. Z.,A simple introduction to complex manifolds at theEurophysics Conference on Unification of the Fundamental Particle Interactions, edited byS. Ferrara, J. Ellis andP. van Nieuwenhuizen (Plenum Press, New York and London) 1980, p. 41.MATHGoogle Scholar
  15. [15]
    Freeman M. D., Pope C., Sohnins M andStelle K.,Phys. Lett. B,178 (1986) 199;Han-Park Q. andZanon D.,Phys. Rev. D,35 (1987) 4038.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • A. Peterman
    • 1
  • A. Zichichi
    • 2
  1. 1.CNRSMarseilleFrance
  2. 2.CERNGenevaSwitzerland

Personalised recommendations