Advertisement

Metallurgical Transactions A

, Volume 16, Issue 5, pp 753–760 | Cite as

Influence of microstructure on fatigue crack initiation in fully pearlitic steels

  • G. T. Gray
  • A. W. Thompson
  • J. C. Williams
Mechanical Behaviour

Abstract

The effect of microstructure on the fatigue crack initiation of fully pearlitic steels was studied through independent variation of the prior austenite grain size, pearlite colony size, and the pearlite interlamellar spacing. Increasing yield strength (controlled by decreasing the pearlite interlamellar spacing) was seen to increase the smooth and notched-bar crack initiation endurance limit. Grain and colony size variations, at constant yield strength, were seen to exhibit no effect on crack initiation. Scanning Electron Microscopy revealed smooth-bar cracks to have initiated at surface inclusions. The influence of the pearlite interlamellar spacing, reflecting a change in the effective slip length, and the differences between notched and smooth-bar fatigue specimens for studying the effects of microstructure on crack initiation are discussed.

Keywords

Fatigue Metallurgical Transaction Fatigue Crack Crack Initiation Pearlite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Fine and R. O. Ritchie:Fatigue and Microstructure, 1978 ASM Materials Science Seminar, ASM, Metals Park, OH, 1979, pp. 245-78.Google Scholar
  2. 2.
    R. C. Gibson, H. W. Hayden, and J. H. Brophy:Trans. ASM, 1968, vol. 61, pp. 85–93.Google Scholar
  3. 3.
    P. G. Forrest and A. E. L. Tate:J. Inst. Metals, 1964–1965, vol. 93, pp. 438–44.Google Scholar
  4. 4.
    A. W. Thompson and W. A. Backofen:Acta Metall., 1971, vol. 19, pp. 597–606.CrossRefGoogle Scholar
  5. 5.
    M. Klesnil, M. Holzmann, P. Lukas, and P. Rys:J. Iron Steel Inst., 1965, vol. 203, pp. 47–53.Google Scholar
  6. 6.
    W. L. Philips and R. W. Armstrong:J. Mech. Phys. Solids, 1969, vol. 17, pp. 265–70.CrossRefGoogle Scholar
  7. 7.
    R. M. Pelloux:Ultra-Fine Grain Metals, Syracuse University Press, Syracuse, NY, 1970, pp. 231–43.Google Scholar
  8. 8.
    A. Puskar:Metall. Trans. A, 1976, vol. 7, pp. 1529–33.CrossRefGoogle Scholar
  9. 9.
    S. Taira, K. Tanaka, and M. Hoshina:Fatigue Mechanisms, ASTM STP 675, Amer. Soc. Testing Mater., Philadelphia, PA, 1979, pp. 135–73.Google Scholar
  10. 10.
    G. Luetjering, T. Hamajima, and A. Gysler:Proc. 4th Int. Conf. Fracture, D.M.R. Taplin, ed., Pergamon Press, 1977, vol. 2, pp. 7–16.Google Scholar
  11. 11.
    G. Luetjering and A. Gysler:Proc. 1st Int. Sym. Aluminum Trans- formation Techn. and Appl., C. A. Pamillo, H. Biloni, and D.E. Embury, eds., ASM, Metals Park, OH, 1980, pp. 171–210.Google Scholar
  12. 12.
    J.J. Lucas and P.P. Konieczny:Metall. Trans. A, 1971, vol. 2, pp. 911–12.CrossRefGoogle Scholar
  13. 13.
    A. Gysler, J. Lindigkeit, and G. Luetjering:Proc. 5th Int. Conf. Strength of Metals and Alloys, Pergamon Press, 1979, vol. 2, pp. 1113–18.Google Scholar
  14. 14.
    M. Peters, A. Gysler, and G. Luetjering:Titanium 80, Science and Technology, H. Kimura and O. Izumi, eds., AIME, Warrendale, PA, 1980, vol.’3, pp. 1777–86.Google Scholar
  15. 15.
    N.E. Paton, J.C. Williams, J.C. Chesnutt, and A. W. Thompson:Alloy Design for Fatigue and Fracture Resistance, AGARD Conf. Proc, AGARD-CP-185, NATO-AGARD, 1975.Google Scholar
  16. 16.
    A. W. Bowen and C. A. Stubbington:Titanium Science and Tech- nology, Jaffee and Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 2097–108.Google Scholar
  17. 17.
    C.A. Stubbington and A.W. Bowen:J. Mat. Sci., 1974, vol. 9, pp. 941–47.CrossRefGoogle Scholar
  18. 18.
    J. D. Grozier and J. H. Bucher:J. Mater., 1967, vol. 2, pp. 393–407.Google Scholar
  19. 19.
    G. E. Dieter, R. F. Mehl, and G. T. Home:Trans. ASM, 1955, vol. 47, pp. 423–39.Google Scholar
  20. 20.
    Y. H. Kim, T. Mura, and M. E. Fine:Metall. Trans. A, 1978, vol. 9, pp. 1679–83.CrossRefGoogle Scholar
  21. 21.
    A. Querales and J.G. Byrne:Fat. Eng. Mats. Struc, 1979, vol. 1, pp. 371–82.CrossRefGoogle Scholar
  22. 22.
    J.P. Benson and D. V. Edmonds:Met. Sci., 1978, vol. 12, pp. 223–32.CrossRefGoogle Scholar
  23. 23.
    P.O. Kettunen:J. Iron Steel Inst., 1964, vol. 203, pp. 209–15.Google Scholar
  24. 24.
    S. Marich:Proc. Seminar on Vanadium in Rail Steels, Vanitec, 1979, pp. 23–40.Google Scholar
  25. 25.
    D. V. Wilson:Met. Sci., 1977, vol. 11, pp. 321–31.CrossRefGoogle Scholar
  26. 26.
    J.M. Hyzak and I.M. Bernstein:Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.Google Scholar
  27. 27.
    G. T. Gay, III, A.W. Thompson, J.C. Williams, and D.H. Stone:Can. Met. Quart., 1982, vol. 21, pp. 73–78.Google Scholar
  28. 28.
    G. T. Gay, III, J. C. Williams, and A. W. Thompson:Metall. Trans. A, 1983, vol. 14A, pp. 421–33.Google Scholar
  29. 29.
    A.W. Thompson and J.C. Chesnutt :Metall. Trans. A, vol. 10A, pp. 1193–96.Google Scholar
  30. 30.
    G. Birkbeck, A. E. Inckle, and G. W. J. Waldron:J. Mat. Sci., 1971, vol. 6, pp. 319–23.CrossRefGoogle Scholar
  31. 31.
    J. Schijve:Fatigue Crack Propagation, ASTM STP 415, Amer. Soc. Testing Mater., Philadelphia, PA, 1967, pp. 415–59.Google Scholar
  32. 32.
    P.S. Maiya and D.E. Busch:Metall. Trans. A, 1975, vol. 6A, pp. 1761–66.Google Scholar
  33. 33.
    G.R. Leverant, B.S. Langer, A. Yuen, and S.W. Hopkins:Metall. Trans. A, 1979, vol. 10A, pp. 251–57.Google Scholar
  34. 34.
    M.E. Fine:Metall. Trans. A, 1980, vol. 11A, pp. 365–79.Google Scholar
  35. 35.
    G.J. Fowler: Ph.D. Thesis, 1976, University of California at Los Angeles, CA.Google Scholar
  36. 36.
    C. Laird:Fatigue Crack Propagation, ASTM STP 415, Amer. Soc. Testing Mater., Philadelphia, PA, 1967, pp. 131–81.Google Scholar
  37. 37.
    T. Yokobori, Y. Sawaki, S. Shono, and A. Kumasai:Trans. Japan Inst. Metals, 1976, vol. 17, pp. 1–10.Google Scholar
  38. 38.
    G. J. Fowler:Mat. Sci. Eng., 1979, vol. 39, pp. 121–26.CrossRefGoogle Scholar
  39. 39.
    S. Marich: Bulletin 663, Amer. Railway Eng. Assoc., 1977, pp. 594–610.Google Scholar
  40. 40.
    A.R. Rosenfield, E. Votava, and G. T. Hahn:Trans. ASM, 1968, vol. 61, pp. 807–12.Google Scholar
  41. 41.
    A.R. Rosenfield, G.T. Hahn, and J. D. Embury:Metall. Trans., 1972, vol. 3, pp. 2797–804.CrossRefGoogle Scholar
  42. 42.
    P. Lukas and M. Klesnil:Mat. Sci. Eng., 1978, vol. 34, pp. 61–66.CrossRefGoogle Scholar
  43. 43.
    M. Klesnil and P. Lukas:Eng. Frac. Mech., 1972, vol. 4, pp. 77–92.CrossRefGoogle Scholar
  44. 44.
    C. Laird:Mat. Sci. Eng., 1976, vol. 22, pp. 231–36.CrossRefGoogle Scholar
  45. 45.
    N.E. Frost:J. Mech. Eng. Sci., 1960, vol. 2, pp. 109–19.CrossRefGoogle Scholar
  46. 46.
    N.E. Frost, K.J. Marsh, and L.P. Pook:Metal Fatigue, Clarendon Press, Oxford, 1974, pp. 149–56.Google Scholar
  47. 47.
    N.E. Dowling:Fat. Eng. Mat. Struc., 1979, vol. 2, pp. 129–38.CrossRefGoogle Scholar
  48. 48.
    S. Suresh and R. O. Ritchie:Int. Metals Reviews, 1984, vol. 29, pp. 445–76.Google Scholar
  49. 49.
    B. N. Leis, M. F. Kanninen, A. T. Topper, J. Ahmad, and D. Broek:A Critical Review of the Short Crack Problem in Fatigue, Report AFWAL-TR-83-4019, Air Force Systems Command, WPAFB, OH, January 1983.Google Scholar
  50. 50.
    H. Tada, P. Paris, and G. Irwin:The Stress Analysis of Cracks Hand- book, Del Research Corporation, 1973.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1985

Authors and Affiliations

  • G. T. Gray
    • 1
  • A. W. Thompson
    • 2
  • J. C. Williams
    • 2
  1. 1.Los Alamos Scientific LaboratoryLos Alamos
  2. 2.Carnegie-Mellon UniversityPittsburgh

Personalised recommendations