Folia Microbiologica

, Volume 40, Issue 5, pp 447–453 | Cite as

Regulation, purification and partial characterization of glutamine synthetase fromStreptomyces aureofaciens

  • K. T. Nguyen
  • L. T. Nguyen
  • J. Kopecký
  • O. Benada
  • V. Běhal


The activity of glutamine synthetase (GS) fromStreptomyces aureofaciens was regulated by the availability of the nitrogen source. Rich nitrogen sources repressed GS synthesis and increased GS adenylylation. The enzyme was purified 270-fold to virtual homogeneity with 37% recovery. The molar mass of the native enzyme and its subunits was determined to be 620 and 55 kDa, respectively, indicating that GS is composed of 12 identical subunits. The enzyme has a hexagonal-bilayered structure as observed by electron microscopy. The isoelectric point of the purified GS was at pH 4.2. The enzyme was stable for 1 h at 50°C but lost activity rapidly when incubated at 65 and 70°C. Mg2+ supported relative synthetic activity of 100 and 72%, respectively, with the corresponding pH optima of 7.3 and 7.0. Mn2+ ions activated transferase activity at a pH optimum of 7.0. The temperature optimum for all GS activities was 50°C. Intermediates of the citric acid cycle exerted insignificant effects on the synthetic activities. There was no SH-group essential for the GS activity.


Streptomyces Glutamine Synthetase Transferase Activity Synthetic Activity Streptomyces Aureofaciens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrmann I., Hillemann D., Puhler A., Strauch E., Wohlleben W.: Overexpression ofStreptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine.J. Bacteriol.172, 5326–5334 (1990).PubMedGoogle Scholar
  2. Benada O., Pokorný V.: Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films.J. Electron. Microsc. Tech.16, 235–239 (1990).PubMedCrossRefGoogle Scholar
  3. Blanco F., Alana A., Llama M.J., Serra J.L.: Purification and properties of glutamine synthetase from the non-N2-fixing cyanobacteriumPhormidium laminosum.J. Bacteriol.171, 1158–1165 (1989).PubMedGoogle Scholar
  4. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  5. Braña A.F., Paiva N., Demain A.L.: Pathways and regulation of ammonium assimilation inStreptomyces clavuligerus.J. Gen. Microbiol.132, 1305–1317 (1986).Google Scholar
  6. Edmands J., Noridge N.A., Benson D.R.: The actinorhizal root-nodule symbiontFrankia sp. strain CpI1 has two glutamine synthetases.Proc. Nat. Acad. Sci. USA84, 6126–6130 (1987).PubMedCrossRefGoogle Scholar
  7. Fisher S.H., Wray L.V.: Regulation of glutamine synthetase inStreptomyces cœlicolor.J. Bacteriol.171, 2378–2383 (1989).PubMedGoogle Scholar
  8. Hillemann D., Dammann T., Hillemann A., Wohlleben W.: Genetic and biochemical characterization of the two glutamine synthetases GSI and GSII of the phosphinothricyl-alanine producer,Streptomyces viridochromogenes.J. Gen. Microbiol.139, 1773–1783 (1993).PubMedGoogle Scholar
  9. Kumada Y., Takano E., Nagaoka K.: Purification and properties of a prokaryotic-type glutamine synthetase from bialaphos producerStreptomyces hygroscopicus SF-1293.J. Ferment. Bioeng.70, 1–6 (1990a).CrossRefGoogle Scholar
  10. Kumada Y., Takano E., Nagaoka K., Thompson C.J.:Streptomyces hygroscopicus has two glutamine synthetase genes.J. Bacteriol. 172, 5343–5351 (1990b).PubMedGoogle Scholar
  11. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London)227, 680–685 (1970).CrossRefGoogle Scholar
  12. Nguyen K.T., Nguyen L.T., Běhal V.: What type of glutamine synthetase is important forStreptomyces cœlicolor A3(2) under nitrogen-limited growth conditions.Biotechnol. Lett.16, 1027–1030 (1994).CrossRefGoogle Scholar
  13. Paress P.S., Streicher S.L.: Glutamine synthetase ofStreptomyces cattleya: Purification and regulation of synthesis.J. Gen. Microbiol.131, 1903–1910 (1985).PubMedGoogle Scholar
  14. Rhee S.G., Chock P.B., Stadtman E.R.: Regulation ofEscherichia coli glutamine synthetase.Adv. Enzymol.62, 37–92 (1989).PubMedGoogle Scholar
  15. Shapiro S.: Nitrogen assimilation in actinomycetes and the influence of nitrogen nutrition on actinomycete secondary metabolism, pp. 135–211 inRegulation of Secondary Metabolism in Actinomycetes (S. Shapiro, Ed.), CRC Boca Raton, Florida 1989.Google Scholar
  16. Shapiro B.M., Stadtman E.R.: Glutamine synthetase (Escherichia coli).Methods Enzymol.17A, 910–941 (1970).CrossRefGoogle Scholar
  17. Shapiro S., Vining L.C.: Nitrogen metabolism and chloramphenicol production inStreptomyces venezuelœ.Can J. Microbiol.29, 1706–1714 (1983).PubMedCrossRefGoogle Scholar
  18. Stadtman E.R., Ginsgurg A.: The glutamine synthetase ofEscheria coli: Structure and control, pp. 755–807 inThe Enzymes, Vol. 10 (P.D. Boyer, Ed.). Academic Press, New York-London 1974.Google Scholar
  19. Streicher S.L., Tyler B.: Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacteriumStreptomyces cattleya.Proc. Nat. Acad. Sci. USA28, 229–233 (1981).CrossRefGoogle Scholar
  20. Vančurová I., Vančura A., Volc J., Neužil J., Flieger M., Basařová G., Běhal V.: Isolation and characterization of valine dehydrogenase fromStreptomyces aureofaciens.J. Bacteriol.170, 5192–5196 (1988a).PubMedGoogle Scholar
  21. Vančurová I., Vančura A., Volc J., Neužil J., Flieger M., Běhal V.: NAD-dependentl-amino acid dehydrogenases fromStreptomyces aureofaciens, p. 114 inAbstract Book of 14th International Congress of Biochemistry, Prague 1988; Videopress IOJ, Prague 1988b.Google Scholar
  22. Woods D.R., Reid S.J.: Recent developments of the regulation and structure of glutamine synthetase enzymes from selected bacterial groups.FEMS Microbiol. Rev.11, 273–284 (1993).PubMedCrossRefGoogle Scholar
  23. Woolfolk C.A., Shapiro B.M., Stadtman E.R.: Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase fromEscherichia coli.Arch. Biochem. Biophys.116, 177–192 (1966).PubMedCrossRefGoogle Scholar
  24. Wray L.V. Jr.,Fisher S.H.: TheStreptomyces cœlicolor glnR encodes a protein similar to other bacterial response regulators.Gene130, 145–150 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 1995

Authors and Affiliations

  • K. T. Nguyen
    • 1
  • L. T. Nguyen
    • 1
  • J. Kopecký
    • 1
  • O. Benada
    • 1
  • V. Běhal
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations