Folia Microbiologica

, Volume 41, Issue 2, pp 211–215 | Cite as

Lactic acid production in a continuous culture using lignocellulosic hydrolysate as a substrate. Identification of a physiological model

  • K. Melzoch
  • J. Votruba
  • J. Schwippel
  • M. Rychtera
  • V. Hábová


The effect of lignocellulosic hydrolysate of crushed corn mobs on the growth and lactic acid formation in a continuous culture ofLactobacillus casei andL. lactis at dilution rate 0.08–0.3/h was studied. A simple physiological model of the process was derived from computer-aided analysis of the data which relates bacterial growth, lactic acid formation to the utilization of two different sources of nutrients. The parameters of the model were estimated by nonlinear regression and used for process simulation and estimation of maximum productivity of lactic acid.


Lactic Acid Lactobacillus Specific Growth Rate Dilution Rate Lactic Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



dilution rate, 1/h


concentration of lactic acid, g/L


kinetic parameters, 1/h, 1/h, L g−1 h−1


saturation constant, g/L

S1, S10

concentration of glucose in the fermentor and in the fresh medium, g/L

S2, S20

concentration of unknown growth supporting substrate equivalent to dry matter of biomass formed per L, g/L


mass fraction of RNA in the growing and nongrowing biomass


yield of lactic acid produced based on glucose consumed


dimesionless concentration of RNA defined in Eq. 5


dry matter of biomass, g/L


specific growth rate, 1/h


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuna G., Latrille E., Beal C., Corrieu G.: On-line estimation of biological variable during pH controlled lactic acid fermentations.Biotechnol. Bioeng. 44, 1168–1176 (1994).CrossRefPubMedGoogle Scholar
  2. Borzani W., Furia-Luna M., Sanchez-Podlech P.A., Jerke P.R., De Souza-Neto C.A.C., Dos-Passos R.F., Souza O.: Semicontinous lactic fermentation of whey byLactobacillus bulgaricus. II. Mathematical model.Biotechnol. Lett. 12, 535–540 (1990).CrossRefGoogle Scholar
  3. Goncalves L.M.D., Xavier A.M.R.B., Almeida J.S., Carrondo M.J.T.: Concomitant substrate and product inhibition kinetics in lactic acid production.Enzyme Microb. Technol. 13, 314–319 (1991).CrossRefGoogle Scholar
  4. Hanson T.P. Tsao G.T.: Kinetic studies of the lactic acid fermentation in batch and continuous cultures.Biotechnol. Bioeng. 14, 233–252 (1972).CrossRefGoogle Scholar
  5. Herbert D., Phipps P.J., Strange R.E.: Chemical analysis of microbial cells, pp. 209–344 inMethods in Microbiology, Vol. 5B (J.R. Norris, D.W. Ribbons, Eds). Academic Press, London 1971.Google Scholar
  6. Himmelblau D.M.:Process Analysis by Statistical Methods J. Wiley, New York 1968.Google Scholar
  7. Ishizaki A., Ohta T.: Batch culture kinetics ofl-lactate fermentation employingStreptococcus sp. IO-1.J. Ferment. Bioeng. 67, 46–51 (1989).CrossRefGoogle Scholar
  8. Ishizaki A., Ohta T., Kobayashi G.: Computer simulation forl-lactate batch process employingLactococcus lactis IO-1.J. Biotechnol. 24, 85–107 (1992).CrossRefGoogle Scholar
  9. Leh M.B., Charles M.: Lactic acid production by batch fermentation of whey permeate: A mathematical model.J. Ind. Microbiol. 4, 65–70 (1989).CrossRefGoogle Scholar
  10. Luedeking R., Piret E.: A kinetic study of the lactic acid fermentation.J. Biochem. Microbiol. Technol. Eng. 1, 393–412 (1959).CrossRefGoogle Scholar
  11. Melzoch K., Rychtera M., Hábová V.: Effect of immobilization upon the properties and behavior ofSaccharomyces cells.J. Biotechnol. 32, 59–65 (1994).CrossRefGoogle Scholar
  12. Melzoch K., Votruba J., Rychtera M., Hábová V.: Batch lactic acid fermentation on lignocellusic hydrolysate: Identification of physiological model.Potrav. vědy 14, 1–11 (1996).Google Scholar
  13. Nielsen J., Nikolajsen K., Villadsen J.: Structured modeling of a microbial system: I. A theoretical study of lactic acid fermentation.Biotechnol. Bioeng. 38, 1–10 (1991).CrossRefPubMedGoogle Scholar
  14. Powell E.O.: Transient changes in the growth rate of microorganisms, p. 275–284 inProc. 4th Symp. Continuous Cultivation of Microorganisms (I. Málek, Ed.) Academia, Prague 1968.Google Scholar
  15. Roels J.A.: Application of macroscopic principles to microbial metabolism.Biotechnol. Bioeng. 22, 2457–2514 (1980).CrossRefGoogle Scholar
  16. Schwippel J., Votruba J.: Methods for computer simulation of complex continuous cultivation of microorganisms.Folia Microbiol. 38, 311–319 (1993).CrossRefGoogle Scholar
  17. Venkatesh K.V., Okos M.R., Wankat P.C.: Kinetic model of growth and lactic acid production from lactose byLactobacillus bulgaricus.Process Biochem. 28, 231–241 (1993).CrossRefGoogle Scholar
  18. Voleský B., Votruba J.:Modeling and Optimization of Fermentation Processes. Elsevier, Amsterdam 1992.Google Scholar
  19. Yang S.T., Tang I.C., Okos M.R.: Kinetics and mathematical modeling of homoacetic fermentation of lactate byClostridium formicoaceticum.Biotechnol. Bioeng. 32, 797–802 (1988).CrossRefPubMedGoogle Scholar

Copyright information

© Folia Microbiologica 1996

Authors and Affiliations

  • K. Melzoch
    • 1
  • J. Votruba
    • 2
  • J. Schwippel
    • 2
  • M. Rychtera
    • 1
  • V. Hábová
    • 1
  1. 1.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Institute of MicrobiologyPrague 45Czech Republic

Personalised recommendations