Folia Microbiologica

, Volume 41, Issue 2, pp 154–158 | Cite as

Relationship ofAzotobacter chrooccum siderophores with nitrogen fixation

  • S. Suneja
  • N. Narula
  • R. C. Anand
  • K. Lakshminarayana


In iron-limited medium, a siderophore producing soil isolate ofAzotobacter chroococcum showed a high level of hydroxamate with relatively low level of nitrogen fixation. Inclusion of iron in the medium resulted in increased nitrogen fixation with decreased hydroxamate production. Under shake culture conditions, the level of both hydroxamate and catechol type of siderophores decreased after 2 d of incubation in iron-deficient medium. However, under iron-sufficient conditions, both siderophore production and nitrogen fixation increased with time although the level of siderophore was quite low. A number of soil isolates and mutants ofA. chrococcum were tested for nitrogen fixation, hydroxamate and catechol type of siderophore production. Wide variation was observed in the siderophore level and nitrogen fixation in the cultures tested. Nitrogen fixation was higher in the iron-sufficient medium than in iron-limited one while hydroxamate yield was higher in iron-limited medium than in the iron-sufficient one in all the cultures. Inclusion of ammonium acetate in the medium induced catechol synthesis in more than 60% of the cultures.


Nitrogen Fixation Catechol Siderophore Production NH4OAc Soil Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnow L.E.: Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures.J. Biol. Chem.118, 531–537 (1937).Google Scholar
  2. Balajee S., Mahadevan A.: Dissimilation of 2,4-dichlorophenoxyacetic acid byAzotobacter chroococcum.Xenobiotica20, 607–617 (1990).PubMedCrossRefGoogle Scholar
  3. Bothe H., de Bruijn F.J., Newton W.E.: Nitrogen fixation hundred years after.Proc. 7th Internat. Congr. Nitrogen Fixation, Koln (Cologne), Germany. Fischer, Stuttgart-New York 1988.Google Scholar
  4. Brill W.J.: Biochemical genetics of nitrogen fixation.Microbiol. Rev.44, 449–467 (1980).PubMedGoogle Scholar
  5. Collinson S.K., Doran J.I., Page W.J.: Production of 3,4-dihydroxybenzoic acid byAzomonas macrocytogenes andAzotobacter paspali.Can. J. Microbiol.33, 169–175 (1987).CrossRefGoogle Scholar
  6. Csaky T.Z.: On the estimation of bound hydroxylamine in biological materials.Acta Chem. Scand.2, 450–454 (1948).CrossRefGoogle Scholar
  7. Dalton H., Postgate J.R.: Growth and physiology ofAzotobacter chroococcum in continuous culture.J. Gen. Microbiol.56, 307–319 (1969).Google Scholar
  8. Expert D., Gill P.R.: Iron: A modulator in bacterial virulence and symbiotic nitrogen fixation, pp. 229–245 inMolecular Signals in Plant Microbe Communications (D.A.S. Verma, Ed.). CRC Press, Boca Raton 1991.Google Scholar
  9. Fekete F.A., Lanzi R.A., Beaulieu J.B., Longcope D.C., Sulya A.W., Hayes R.N., Mabbott G.A.: Isolation and preliminary characterization of hydroxamic acids formed by nitrogen fixingAzotobacter chrococcum B 8.Appl. Environ. Microbiol.55, 298–305 (1989).PubMedGoogle Scholar
  10. James E.: Strain variation inAzotobacter chroococum. MSc Thesis. Post-gradiate School, Indian Agriculture Research Institute, New Delhi (India) 1970.Google Scholar
  11. Knosp O., Von Tigerstrom M., Page W.J.: Siderophore mediated uptake of iron byAzotobacter vinelandii.J. Bacteriol.159, 341–347 (1984).PubMedGoogle Scholar
  12. Lakshminarayana K.: Influence ofAzotobacter on nitrogen nutrition of plants and crop productivity.Proc. Indian Nat. Sci. Acad.B59, 303–308 (1993).Google Scholar
  13. Markham R.: A steam distillation apparatus for micro-Kjeldahl analysis.Biochem. J.36, 790–791 (1942).PubMedGoogle Scholar
  14. Neilands J.B.: Microbial iron compounds.Ann. Rev. Biochem.50, 715–731 (1981).PubMedCrossRefGoogle Scholar
  15. Page W.J.: Iron dependent production of hydroxamte by sodium dependentAzotobacter chroococcum.Appl. Environ. Microbiol.53, 1418–1424 (1987).PubMedGoogle Scholar
  16. Page W.J., Huyer M.: Derepression ofAzotobacter vinelandii siderophore system using iron containing minerals to limit iron repletion.J. Bacteriol.158, 496–502 (1984).PubMedGoogle Scholar
  17. Page W.J., Sadoff H.L.: Physiological factors affecting transformation ofAzotobacter vinelandii.J. Bacteriol.125, 1080–1087 (1976).PubMedGoogle Scholar
  18. Purushothaman D., Sadasivan S., Dhanpal N.: Nitrogen fixation and ammonia assimilation inAzotobacter chroococcum isolates from C3 and C4 plants.Curr. Sci.48, 174–176 (1979).Google Scholar
  19. Sayed M.L., Rafel A.H., Mohmad T.A.: Nitrogen fixation by some cultures ofAzotobacter.Pakistan J. Microbiol.4, 67–69 (1971).Google Scholar
  20. Shivprasad S., Page W.J.: Catechol formation and melanization by Na+-dependentAzotobacter chroococcum: A protective mechanism for aeroadaptation.Appl. Environ. Microbiol.55, 1811–1817 (1989).PubMedGoogle Scholar
  21. Suneja S., Lakshminarayana K.: Production of hydroxamate and catechol siderophores byAzotobacter chroococcum.Indian J. Exp. Biol.31, 878–881 (1993).Google Scholar
  22. Suneja S., Lakshminarayana K., Gupta P.P.: Role ofAzotobacter chroococcum siderophores in control of bacterial rot andSclerotinia rot of mustard.Indian J. Mycol. Plant Pathol.24, 202–205 (1994a).Google Scholar
  23. Suneja S., Lakshminarayana K., Narula N.: Optimization of cultural conditions for hydroxamate type of siderophore production byAzotobacter chroococum.Microbiol. Res.149, 385–390 (1994b).Google Scholar

Copyright information

© Folia Microbiologica 1996

Authors and Affiliations

  • S. Suneja
    • 1
  • N. Narula
    • 1
  • R. C. Anand
    • 1
  • K. Lakshminarayana
    • 1
  1. 1.Department of MicrobiologyChaudhary Charan Singh Haryana Agricultural UniversityHisarIndia

Personalised recommendations