Folia Microbiologica

, 39:187 | Cite as

Changes in fatty acid branching and unsaturation ofStreptomyces cinnamonensis as a response to NaCl concentration

  • S. Pospíšil
  • T. Řezanka


Three differentStreptomyces cinnamonensis strains (viz. standard, regulatory, and non-differentiating) were grown in a synthetic medium containing 0–4% NaCl and the composition of total cellular fatty acids was analyzed. The increasing salt concentration resulted in an increasing proportion of even-numbered straight-chain fatty acids, mostly at the expense of branched-chain fatty acids. Unsaturated fatty acids, palmitoleic acid in particular, represent the major proportion of straight-chain fatty acids.


Streptomyces Methyl Oleate Monensin Cellular Fatty Acid Palmitoleic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arima K., Okazaki H., Ono H., Yamada K., Beppu T.: Effect of exogenous fatty acids on the cellular fatty acid composition and neomycin formation in a mutant strain ofStreptomyces fradiae.Agric. Biol. Chem. 37, 2313–2317 (1973).Google Scholar
  2. Cronan J.E., Gelman E.P.: Physical properties of membrane lipids: Biological relevance and regulation.Bacteriol. Rev.,39, 232–256 (1975).PubMedGoogle Scholar
  3. Csonka N.: Physiological and genetic responses of bacteria to osmotic stress.Microbiol. Rev. 53, 121–147 (1989).PubMedGoogle Scholar
  4. David L., Loultheiller H., Bauchart D., Auboiron S., Asselineau J.: Effects of exogenous methyl oleate on the biosynthesis of nigericin, a polyether carboxylic antibiotic, byStreptomyces hygroscopicus NRRL B-1865.Biosci. Biotechnol. Biochem. 56, 330 (1992).PubMedCrossRefGoogle Scholar
  5. Fulco A.J.: Fatty acid metabolism in bacteria.Progr. Lipid Res. 22, 133–160 (1983).CrossRefGoogle Scholar
  6. Gräfe U., Reinhardt G., Krebs D., Roth M., Noack D.: Altered lipid composition in a non-differentiating derivative ofStreptomyces hygroscopicus.J. Gen. Microbiol. 128, 2693–2698 (1982).PubMedGoogle Scholar
  7. Haney M.E., Hoehn M.M.: Monensin, a new biologically active compound. I. Discovery and isolation.Antimicrob. Agents Chemother. 1967, 349–352 (1968).Google Scholar
  8. Kaneda T.:Iso- andanteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance.Microbiol. Rev. 55, 288–302 (1991).PubMedGoogle Scholar
  9. Killham K., Firestone M.K.: Salt stress control of intracellular solutes in streptomycetes indigenous to saline soils.Appl. Environ. Microbiol. 47, 301–306 (1984).PubMedGoogle Scholar
  10. Pospíšil S., Peterková M., Krumphanzl V., Vaněk Z.: Regulatory mutants ofStreptomyces cinnamonensis producing monensin A.FEMS Microbiol. Lett. 24, 209–213 (1984).Google Scholar
  11. Pospíšil S., Řezanka T., Víden I., Krumphanzl V., Vaněk Z.: Altered fatty acids composition in regulatory mutants ofStreptomyces cinnamonensis.FEMS Microbiol. Lett. 27, 41–43 (1985).Google Scholar
  12. Verma J.N., Khuller G.K.: Lipids of actinomycetes.Adv. Lipid Res. 20, 257–316 (1983).Google Scholar
  13. Vančura A., Řezanka T., Maršálek J., Vančurová I., Křišťan V., Basařová G.: Effect of ammonium ions on the composition of fatty acids inStreptomyces fradiae, produced of tylosin.FEMS Microbiol. Lett. 48, 357–360 (1987).CrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 1994

Authors and Affiliations

  • S. Pospíšil
    • 1
  • T. Řezanka
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague

Personalised recommendations