Folia Microbiologica

, Volume 37, Issue 4, pp 279–282 | Cite as

Lysine-requiring mutants ofAspergillus ochraceus

  • D. Saha
  • T. K. Das


Seven mutants ofAspergillus ochraceus unable to produce lysine have been selected by treating conidia of the wild type with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), at pH 6.4. Complementation analysis revealed that MNNG had caused a mutation at a single locus. Growth studies indicated the growth requirement for lysine in the mutants. Lysine-requiring mutants were further characterized by measurement of colony extension rate at various lysine concentrations.


Ammonium Chloride SAHA Serratia Marcescens Tris Maleate Methionine Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg E.A., Mandel M., Chen B.C.: Optimal conditions for mutagenesis by MNNG inE. coli K 12.Biochem. Biophys. Res. Commun. 18, 788–795 (1965).CrossRefGoogle Scholar
  2. Armandxhyan A.O., Oganesyan M.G.:l-Valine biosynthesis bySerratia marcesscens AZL-R 28 auxotroph mutants. (In Russian).Biol. Zn. Arm. 37, 476–480 (1984).Google Scholar
  3. Catcheside D.G.: Isolation of nutritional mutants ofN. crassa by filtrate enrichment technique.J. Gen. Microbiol. 11, 34–36 (1954).PubMedGoogle Scholar
  4. Cherest H., Eichler F., de Robichon-Szulmajster H.: Genetic and regulatory aspects of methionine biosynthesis inSaccharomyces cerevisiae.J. Bact. 97, 328–336 (1969).PubMedGoogle Scholar
  5. Clutterbuck P., Lovell R., Raistrick H.: The formation from glucose by members of thePenicillum chrysogenum series of a pigment and alkali soluble protein and penicillium: the antibacterial substance of Fleming.Biochem. J. 26, 1907–1918 (1932).PubMedGoogle Scholar
  6. Danitzig A.H., Fairgrieve M., Slayman C.W., Adelberg E.A.: Isolation and characterisation of CHO amino acid transport mutant resistant to melaphalen (l-phenylalanine mustard).Somatic Cell Mol. Genet. 10, 113–121 (1984).CrossRefGoogle Scholar
  7. Dast T.K., Sen K.: Induced mutation developing Δ9 mutants ofA nidulans IMI 72735.Indian J. Exp. Biol. 21, 339–342 (1983).Google Scholar
  8. Das T.K., Sen K.: Studies on the control of enzyme for glyoxylate cycle inA. terreus IRRL 16043.Current Microbiol. 9, 55–58 (1983).CrossRefGoogle Scholar
  9. Delic V., Hopwood A.H., Friend E.J.: Mutagenesis by MNNG inStreptomyces coelicolor.Mutat. Res. 9, 167–182 (1970).PubMedGoogle Scholar
  10. Gajewski W., Litwinska J.: Methionine loci and their suppressors inA. nidulans.Mol. Gen. Genet. 102, 210–220 (1968).PubMedCrossRefGoogle Scholar
  11. Goosen T., Van Engelenburg F., Debets F., Swart K., Bos K., Van den Brock H.: Tryptophan auxotropic mutants inA. niger: inactivation of thetrpC gene by cotransformation.Mol. Gen. Genet. 219, 282–288 (1989).PubMedCrossRefGoogle Scholar
  12. Hartman P.E., Ames B.N., Roth J.R., Barness W.H., Levin D.E.: Target sequences for mutagenesis inSalmonella histidine requiring mutants.Environ. Mutagen. 8, 631–641 (1986).PubMedCrossRefGoogle Scholar
  13. Kerr D.S., Flavin M.: The regulation of methionine synthesis and the nature of cystathionine synthesis inNeurospora.J. Biol. Chem. 245, 1842–1855 (1970).PubMedGoogle Scholar
  14. Kredich M.N., Tomkins G.M.: The enzymatic synthesis ofl-cysteine inE. coli andSalmonella typhimurium.J. Biol. Chem. 241, 4955–4965 (1966).PubMedGoogle Scholar
  15. Loppes R., Heindricks R.: New arginine-requiring mutants inChlamydomonas reinhardtii.Arch. Microbiol. 143, 348–352 (1986).CrossRefGoogle Scholar
  16. Paszewski A., Grabski J.: Enzymatic lesions in methionine mutants ofA. nidulans: Role and regulation of an alternative pathway for cysteine and methionine synthesis.J. Bacteriol 124, 893–904 (1975).PubMedGoogle Scholar
  17. Pieniazek N.J., Bal J., Balbin E., Stepien P.: AnA. nidulans mutant lacking serine transacetylase evidence for two pathways of cysteine biosynthesis.Mol. Gen. Genet. 132, 363–366 (1974).PubMedCrossRefGoogle Scholar
  18. Prasad I.: Genetic analysis of the coloured mutants ofAspergillus niger.Genetica 41, 388–398 (1970).PubMedCrossRefGoogle Scholar
  19. Weibers J.L., Garner H.R.: Acetyl derivatives of homoserine as substrates for homocystein and cystein synthesis inN. crassa yeast andE. coli.J. Biol. Chem. 242, 5644–5649 (1967).Google Scholar
  20. Winston M., Bhattacharya S.K.: Biosynthetic and regulatory role of Lys9 mutants ofSaccharomyces cerevisiae.Current Genet. 11, 393–398 (1987).CrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 1992

Authors and Affiliations

  • D. Saha
    • 1
  • T. K. Das
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniNadiaIndia

Personalised recommendations