Folia Microbiologica

, Volume 36, Issue 2, pp 158–163 | Cite as

Characterization of catalase-negative mutants of methylotrophic yeastHansenula polymorpha

  • L. R. Aminova
  • E. Kyslíková
  • O. Volfová
  • Y. A. Trotsenko


Three recently isolated catalase-negative mutants ofHansenula polymorpha lost the ability to grow on methanol but grew in media containing glucose, ethanol or glycerol. Their incubation in a medium with methanol resulted in an accumulation of hydrogen peroxide and cell death. During growth of a catalase-negative mutant in chemostat on a mixture of methanol and glucose, neither H2O2 accumulation nor cell death were observed up to the molar ratio of 10:1 of the two substrates. Cytochrome-c peroxidase and NADH-peroxidase activities were detected in the cells. In methylotrophic yeasts, catalase seems to be an enzyme characteristic of the metabolism of methanol but not needed for the metabolism of multicarbon substrates. The hydrogen peroxide produced during growth of the mutants on mixed substrates is detoxified by cytochrome-c peroxidase and other peroxidases.


NASH H202 HCHO Alcohol Oxidase Methylotrophic Yeast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell J.G., Cowey C.B., Youngson A.: The effect of purified glutathion-peroxidase, GSH-S-transferase and other factors.Biochim. Biophys. Acta 759, 91–99. (1984).Google Scholar
  2. Bystrykh L.U., Aminova L.R., Trotsenko Y.A.: Methanol metabolism in mutants of the methylotrophic yeastHansenula polymorpha.FEMS Microbiol. Lett. 51, 89–94 (1988).CrossRefGoogle Scholar
  3. Bystrykh L.V., Sokolov A.P., Trotsenko Y.A.: Purification and properties of dihydroxyacetone synthase from the methylotrophic yeastCandida boidinii.FEBS Lett. 132 324–428 (1981).CrossRefGoogle Scholar
  4. van Dijken J.P., Otto R., Harder W: Growth ofHansenula polymorpha in a methanol-limited chemostat. Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism.Arch. Microbiol. 111, 137–144 (1976).PubMedCrossRefGoogle Scholar
  5. Ellis S.B., Brust P.F., Koutz P.J., Waters A.F., Harpold M.M., Gingeras T.R.: Isolation of alcohol oxidase and two other methanol regulatable genes from the yeastPichia pastoris.Mol. Cel. Biol. 5, 1111–1121 (1985).Google Scholar
  6. Giuseppin M.L.F., van Eijk H.M.J., Bos A., Verduyn C., van Dijken J.P.: Utilization of methanol by a catalase-negative mutant ofHansenula polymorpha Appl. Microbiol. Biotechnol. 28, 286–292 (1988).Google Scholar
  7. Goodman J.M.: Dihydroxyacetone synthase is an abundant constituent of the methanol induced peroxisome ofCandida boidinii.J. Biol. Chem. 260, 7108–7113 (1985).PubMedGoogle Scholar
  8. Hansen H., Roggenkamp R.: Functional complementation of catalase-defective peroxisomes in a methylotrophic yeast by import of the catalase A fromSaccharomyces cerevisiae.Eur. J. Biochem. 184, 173–179 (1989).PubMedCrossRefGoogle Scholar
  9. Herbert D., Phipps P.J., Strange R.E.: Chemical analysis of microbial cells.Methods Microbiol. 5B, 209–344 (1971).Google Scholar
  10. Kato N., Yoshikawa H., Tanaka K., Shimao M., Sakazawa C.: Dihydroxyacetone kinase from a methylotrophic yeast,Hansenula polymorpha CBS 4732. Purification, characterization and physiological role.Arch. Microbiol. 150, 155–159 (1988).CrossRefGoogle Scholar
  11. Lazarow P.B., Fujiki Y.: Biogenesis of peroxisomes.Ann. Rev. Cell. Biol. 1, 489–530 (1985).PubMedGoogle Scholar
  12. Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars.Anal. Chem. 31, 1426–1428 (1959).Google Scholar
  13. Nash T.: The colorimetric estimation of formaldehyde by means of the Hantzsch reaction.Biochem. J. 55, 416–421 (1953).PubMedGoogle Scholar
  14. Roggenkamp R., Janowicz Z., Stanikowski B., Hollenberg C.P.: Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeastHansenula polymorpha.Mol. Gen. Genet. 194, 489–493 (1984).PubMedCrossRefGoogle Scholar
  15. Trotsenko Y.A., Bystrykh L.V., Ubiyvovk U.M.: Regulatory aspects of methanol metabolism in yeasts, pp. 118–122 inMicrobial Growth on C 1 Compounds. Proc. 4th Internat. Symp., Washington 1984.Google Scholar
  16. Veenhuis M., van Dijken J.P., Harder W.: The significance of peroxisomes in the metabolism of one carbon compound in yeasts.Adv. Microbiol. Physiol. 24, 1–82 (1983).Google Scholar
  17. Verduyn C., Giuseppin M.L.F., Scheffers W.A., van Dijken J.P.: Hydrogen peroxide metabolism in yeasts.Appl. Environ. Microbiol. 54, 2086–2090 (1988).PubMedGoogle Scholar
  18. Volfová O.: Studies on methanol-oxidizing yeast. III. Enzymes.Folia Microbiol. 20, 307–319 (1975).CrossRefGoogle Scholar
  19. Volfová O., Kořínek V., Kyslíková E.: Alcohol oxidase inCandida boidinii on methanol-xylose mixtures.Biotechnol. Lett. 10, 643–648 (1988).CrossRefGoogle Scholar

Copyright information

© Folia Microbiologica 1991

Authors and Affiliations

  • L. R. Aminova
    • 1
  • E. Kyslíková
    • 2
  • O. Volfová
    • 2
  • Y. A. Trotsenko
    • 1
  1. 1.Institute of Biochemistry and Physiology of MicroorganismsAcademy of SciencesPushchinoUSSR
  2. 2.Institute of MicrobiologyCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations