Skip to main content
Log in

Isolation of DNA-dependent RNA polymerase fromStreptomyces granaticolor and its binding to phage ϕ29 DNA

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Partially purified DNA-dependent RNA polymerase ofStreptomyces granaticolor was further separated on phosphocellulose in 50% glycerol and a single activity peak was obtained. The enzyme isolated in this way consisted of 4 main proteins with molar mass of 145, 132, 50 and 46 kg/mol. These four subunits, represented 93% proteins of the active fraction. To test the ability of RNA polymerase to recognize specific sites on DNA, binding sites for RNA polymerase on phage ϕ29 DNA were mapped by electron microscopy. The specific binding sites detected were compared with those for RNA polymerases fromEscherichia coli andBacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barthelmy I., Salas M., Mellado R.P.:In vivo transcription of bacteriophage ϕ29 DNA: transcription initiation sites.J. Virol. 60, 874–879 (1986).

    Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of, microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Burgess R.R., Jendrisak J.J.: A procedure for the rapid large-scale purification ofEscherichia coli DNA dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography.Biochemistry 14, 4634–4638 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Davis R.W., Simon M., Davidson N.: Electron microscopic heteroduplex methods for mapping regions of base sequence homology in nucleic acid, pp. 413–428 inMethods in Enzymology (L. Grossman, K. Moldave, Eds.), Vol. 210. Academic Press, New York 1971.

    Google Scholar 

  • Gonzales N., Wiggs J., Chamberlin M.J.: A simple procedure for resolution ofEscherichia coli RNA polymerase holoenzyme from core enzyme polymerase.Arch. Biochem. Biophys. 182, 404–408 (1977).

    Article  Google Scholar 

  • Inciarte M.R., Lázaro J.M., Salas M., Vinuela E.: Physical map of bacteriophage ϕ29 DNA.Virology 74, 314–323 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Jones G.H.: Purification of RNA polymerase from actinomycin producing and nonproducing cells ofStreptomyces antibioticus.Arch. Biochem. Biophys. 198, 195–204 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lowe P.A., Hager D.A., Burgess R.R.: Purification and properties of the σ subunit ofEscherichia coli DNA-dependent RNA polymerase.Biochemistry 18, 1344–1352 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Mellado R.P., Barthelmy I., Salas M.:In vivo transcription of bacteriophage ϕ29. Early and late promoter sequences.J. Mol. Biol. 191, 191–197 (1986a).

    Article  PubMed  CAS  Google Scholar 

  • Mellado R.P., Barthelmy I., Salas M.:In vitro transcription of bacteriophage ϕ29. Correlation betweenin vitro andin vivo promoters.Nucl. Acids Res. 14, 4731–4741 (1986b).

    Article  PubMed  CAS  Google Scholar 

  • Mukai R., Iida Y.: Separation of RNA polymerase from core enzyme on DNA-cellulose column.Biochem. Biophys. Res. Commun. 54, 134–139 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein C., Heyden B.: Chromatography of RNA polymerase fromEscherichia coli on single stranded DNA-agarose columns.Biochem. Biophys. Res. Commun. 47, 282–289 (1972).

    Article  PubMed  Google Scholar 

  • Portmann R., Schaffner W., Birnstiel M.: Partial denaturation mapping of cloned histone DNA from the sea urchinPsammechinus milliaris.Nature 264, 31–34 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Pulido D., Jiménez A., Salas M., Mellado R.P.:Bacillus subtilis phage ϕ29 main promoters are efficiently recognizedin vitro by theStreptomyces lividans RNA polymerase.Gene 49, 377–382 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Saneyoshi M., Tohyama J., Nakayama C., Takiya S., Iwabuchi X.: Inhibitory effects of 3′-deoxycytidine 5′-triphosphate on DNA-dependent RNA polymerase I and II purified fromDictyostelium discoideum cells.Nucl Acids Res. 9, 3129–3138 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sogo J.M., Inciarte M.R., Corral J., Vinuela E., Solas M.: RNA polymerase binding sites and transcription map of the DNA ofBacillus subtilis phage ϕ29.J. Mol. Biol. 127, 411–436 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sogo J.M., Lozano M., Salas M.:In vitro transcription of theBacillus subtilis phage ϕ29 DNA byBacillus subtilis andEscherichia coli RNA polymerase.Nucl. Acids Res. 12, 1943–1960 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider H.J., Szybalski W.: Electron microscopic mapping of RNA polymerase binding to coliphage λ DNA.J. Mol. Biol. 123, 485–498 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ŝmardová, J., Felsberg, J., Ŝmarda, J. et al. Isolation of DNA-dependent RNA polymerase fromStreptomyces granaticolor and its binding to phage ϕ29 DNA. Folia Microbiol 36, 120–126 (1991). https://doi.org/10.1007/BF02814489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814489

Keywords

Navigation