Theory in Biosciences

, Volume 124, Issue 2, pp 165–183 | Cite as

The developmental evolution of avian digit homology: An update



The identity of avian digits has been unresolved since the beginning of evolutionary morphology in the mid-19th century, i.e. as soon as questions of phylogenetic homology have been raised. The main source of concern is the persistent discrepancy between anatomical/paleontological and embryological evidence over the identity of avian digits. In this paper, recent evidence pertaining to the question of avian digit homology is reviewed and the various ideas of how to resolve the disagreement among developmental and phylogenetic evidence are evaluated. Paleontological evidence unequivocally supports the hypothesis that the fully formed digits of maniraptoran theropods are digits DI, DII, and DIII, because the phylogenetic position ofHerrerasaurus is resolved, even when hand characters are excluded from the analysis. Regarding the developmental origin of the three digits of the avian hand the discovery of an anterior digit condensation in the limb bud of chickens and ostriches conclusively shows that these three digits are developing from condensations CII, CIII, and CIV. The existence of this additional anterior condensation has been confirmed in four different labs, using four different methods: Alcian blue staining, PNA affinity histochemistry, micro-capillary regression andSox9 expression. Finally, recent evidence shows that the digit developing from condensation CII has a Hox gene expression pattern that is found in digit DI of mice forelimb and chick hind limbs. The sum of these data supports the idea that digit identity has shifted relative to the location of condensations, known as Frame Shift Hypothesis, such that condensation CII develops into digit DI and condensation CIII develops into digit DII, etc. A review of the literature on the digit identity of the Italian Three-toed Skink orLuscengola (Chalcides chalcides), shows that digit identity frame shifts may not be limited to the bird hand but may be characteristic of “adaptive” digit reduction in amniotes (sensu Steiner, H., Anders, G., 1946. Zur Frage der Entstehung von Rudimenten. Die Reduktion der Gliedmassen vonChalcides tridactylus Laur. Rev. Suisse Zool. 53, 537–546) in general. In this mode of evolution two digits are lost, in the course of the adaptation of the three anterior digits to a function that does not require the two posterior digits. This evidence suggests that the evolution of digits in tetrapods can proceed at least on two distinct levels of integration, the level of digit condensations and that of adult digits.


Bird origins Chalcides Digit identity Phenogenetic drift Frame shift hypothesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amundson, R., 2005. The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge University Press, Cambridge.Google Scholar
  2. Benedetto, J.L., 1973. Herrerasauridae, nueva familia de sarisquios triscos. Ameghiniana 10, 89–102.Google Scholar
  3. Brandley, M.C., Schmitz, A., et al., 2005. Partitioned Bayesian analysies, partion choice and the phylogenetic relationships of Scincid lizards. Syst. Biol. 54, 373–390.PubMedCrossRefGoogle Scholar
  4. Braus, H., 1906. Die Entwicklung der Form der Extremitäten und des Extremitätenskeletts. Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. O. Hertwig. Jena, Gustav Fisher 3 (part 2), 167–338.Google Scholar
  5. Bruno, S., Maugeri, S., 1976. Rettili d’Italia: Tartarughe e Sauri. I.A. Martello, Firenze, Italia.Google Scholar
  6. Burke, A.C., Alberch, P., 1985. The development and homology of the chelonian carpus and tarsus. J. Morph. 186, 119–131.CrossRefGoogle Scholar
  7. Burke, A.C., Feduccia, A., 1997. Developmental patterns and the identification of homologies in the avian hand. Science 278, 666–668.CrossRefGoogle Scholar
  8. Caputo, V., Lanza, B., et al., 1995. Body elongation and limb reduction in the genusChalcides Laurenti 1768 (Squamata Scincidae): a comparative study. Trop. Zool. 8, 95–152.Google Scholar
  9. Carroll, S.B., Grenier, J.K., et al., 2001. From DNA to Diversity, Blackwell Science, Malden, MA.Google Scholar
  10. Chatterjee, S., 1998. Counting the fingers of birds and dinosaurs. Science 280, 355a.CrossRefGoogle Scholar
  11. Colbert, E., 1970. A saurischian dinosaur from the Triassic of Brazil. Am. Mus. Novitates 2405, 1–39.Google Scholar
  12. Dahn, R.D., Fallon, J.F., 2000. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441.PubMedCrossRefGoogle Scholar
  13. Dunlop, L.-L.T., Hall, B.K., 1995. Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis. Int. J. Dev. Biol. 39, 357–371.PubMedGoogle Scholar
  14. Fabrezi, M., 2001. A survey of prepollex and prehallux variation in anuran limbs. Zool. J. Linn. Soc. 131, 227–248.CrossRefGoogle Scholar
  15. Feduccia, A., Nowicki, J., 2002. The hand of birds revealed by early ostrich embryos. Naturwissenschaften 89, 391–393.PubMedCrossRefGoogle Scholar
  16. Feduccia, A., 1996. The Origin and Evolution of Birds. Yale University Press, New Haven.Google Scholar
  17. Feduccia, A., 1999, 1,2,3=2,3,4: accommodating the cladogram. Proc. Natl. Acad. Sci. USA 96, 4740–4742.PubMedCrossRefGoogle Scholar
  18. Feduccia, A., 2001. Digit homology of birds and dinosaurs: accommodating the cladogram. TrEE 16, 285–286.PubMedGoogle Scholar
  19. Feduccia, A., Nowicki, J., 2002. The hand of birds revealed by early ostrich embryos. Naturwissenschaften 89, 391–393.PubMedCrossRefGoogle Scholar
  20. Fürbringer, M., 1870. Die Knochen und Muskeln der Extremitäten bei den schlangenähnlichen Sauriern: Vergleichend Anatomische Abhandlung. Verlag von Wilhelm Engelmann, Leipzig.Google Scholar
  21. Galis, F., Kundrát, M., et al., 2005. Hox genes, digit identities and the theropod/bird transition. J. Exp. Zool. Part B (Mol. Dev. Evol.), 304B, 198–205.CrossRefGoogle Scholar
  22. Galis, F., Kundrát, M., et al., 2003. An old controversy solved: bird embryos have five fingers. TrEE 18, 7–9.Google Scholar
  23. Garner, J.P., Thomas, A.L.R., 1998. Counting the fingers of birds. Science 280, 355.CrossRefGoogle Scholar
  24. Gauthier, J., 1986. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55.Google Scholar
  25. Grandel, H., Schulte-Merker, S., 1998. The development of the paired fins the Zebrafish (Danio rerio). Mech. Dev. 79, 99–120.PubMedCrossRefGoogle Scholar
  26. Greer, A.E., 1991. Limb reduction in Squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25, 166–173.CrossRefGoogle Scholar
  27. Greer, A.E., Caputo, V., et al., 1998. Observations on limb reduction in the Scincid lizard genusChalcides. J. Herpetol. 32, 244–252.CrossRefGoogle Scholar
  28. Hall, B.K., 1994. Homology and embryonic development. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (Eds.), Evolutionary Biology, vol. 28. Plenmum Press, New York, pp. 1–30.Google Scholar
  29. Hall, B.K., 1998. Evolutionary Developmental Biology. Chapman & Hall, London.Google Scholar
  30. Hall, B.K., Miyake, T., 1995. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881–893.PubMedGoogle Scholar
  31. Heiss, H., 1957. Beiderseitige kongenitale daumenlose Fünffingerhand bei Mutter und Kind. Z. Anat. Entwicklungsgesch. 120, 226–231.PubMedCrossRefGoogle Scholar
  32. Hinchliffe, J., 1977. The chondrogenic pattern in chick limb morphogenesis: a problem of development and evolution. In: Ede, D.A., Hinchliffe, J.R., Balls, M. (Eds.), Vertebrate Limb and Somite Morphogenesis. Cambridge University Press, Cambridge, UK, pp. 293–309.Google Scholar
  33. Hinchliffe, J.R., Griffiths, P.J., 1983. The prechondrogenic patterns in tetrapod limb development and their phylogenetic significance. In: Goodwin, B.C., Holder, N., Wylie, C.C. (Eds.), Development and Evolution. Cambridge University Press, Cambridge, pp. 99–121.Google Scholar
  34. Hinchliffe, J.R., Hecht, M., 1984. Homology of the bird wing skeleton. Evol. Biol. 20, 21–37.Google Scholar
  35. Hinchliffe, J.R., Johnson, D.R., 1980. The Development of the Vertebrate Limb. Oxford University Press, New York.Google Scholar
  36. Hiraki, Y., Shukunami, C., 2000. Chondromodulin-I as a novel cartilcage-specific growth-modulating factor. Pediatr. Nephrol. 14, 602–605.PubMedCrossRefGoogle Scholar
  37. Holtz Jr., T.R., 1995. A new phylogeny of the Theropoda. J. Vert. Paleont. 15, 35A.CrossRefGoogle Scholar
  38. Joachimsthal, G., 1900. Verdoppelung des linken Zeigefingers und Dreigliederung des rechten Daumens. Berl. Klin. Wochenschr. 37, 835–838.Google Scholar
  39. Kundrát, M., Seichert, V., et al., 2001. Developmental remnants of the first avian metacarpus. J. Morphol. 248, 252A.Google Scholar
  40. Kundrát, M., Seichert, V., et al., 2002. Pentadactyl pattern of the avian wing autopodium and pyramid reduction hypothesis. J. Exp. Zool. (Mol. Dev. Evol.) 294, 152–159.CrossRefGoogle Scholar
  41. Larsson, H.C.E., Wagner, G.P., 2002. The pentadactyl ground state of the avian wing. J. Exp. Zool. (Mol. Dev. Evol.) 294, 146–151.CrossRefGoogle Scholar
  42. Litingtung, Y., Dahn, R.D., et al., 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.PubMedCrossRefGoogle Scholar
  43. Montagna, W., 1945. A re-investigation of the development of the wing of the bird. J. Morphol. 76, 87–118.CrossRefGoogle Scholar
  44. Müller, G.B., Alberch, P., 1990. Ontogeny of the limb skeleton inAlligator mississippiensis: Developmental invariance and change in the evolution of Archosaur limbs. J. Morphol. 203, 151–164.CrossRefGoogle Scholar
  45. Novas, F.E., 1993. New Information on the systematics and postcranial skeleton ofHerrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto formation (Upper Triassic) of Argenita. J. Vert. Paleont. 13, 400–423.CrossRefGoogle Scholar
  46. Novas, F.E., 1997. Herrerasauridae. In: Currie, P.J. Padian, K. (Eds.), Encyclopedia of Dinosaurs. Academic Press, San Diego.Google Scholar
  47. Nyhart, L.K., 1995. Bioloy Takes Form. Animal Morphology and the German Universities, 1800–1900. University of Chicago Press, Chicago, IL.Google Scholar
  48. Nyhart, L.K., 2002. Learning from history: morphology’s challenges in Germany ca. 1900. J. Morphol. 252, 2–14.PubMedCrossRefGoogle Scholar
  49. Orsini, J.-P., Cheylan, M., 1981.Chalcides chalcides (Linnaeus 1758)—Erzschleiche. In: Böhme, W. (Ed.), Handbuch der Reptilien und Amphibien Europas, vol. 1. Akademische Verlagsgesellschaft, Wiesbaden, pp. 318–337.Google Scholar
  50. Padian, K., 1992. A proposal to standartize tetrapod phalangeal formula designations. J. Vert. Paleontol. 12, 260–262.CrossRefGoogle Scholar
  51. Padian, K., May, C.L., 1993. The earliest dinosaurs. New Mexico Museum of Natural History & Science Bull 3, 379–381.Google Scholar
  52. Prum, R.O., 2002. Why ornithologists should care about the theropod origin of birds. Auk 119, 1–17.CrossRefGoogle Scholar
  53. Qazi, Q., Kassner, E.G., 1988. Triphalangeal thumb. J. Med. Genet. 25, 505–520.PubMedGoogle Scholar
  54. Raff, R., 1996. The Shape of Life. Chicago University Press, Chicago, IL.Google Scholar
  55. Raynaud, A., Clergue-Gazeau, M., 1986. Identification des doigts reduits ou manquanta dans les pattes des embryons de lezard vert (Lacerta viridis) tarites par la cytosine-arabinofuranoside. Camparaison avec les derductions digitales naturalles des speces de reptiles sependtiformes. Arch. Biol. (Bruxelles) 97, 279–299.Google Scholar
  56. Raynaud, A., Clergue-Gazeau, M., et al., 1986. Remarques preliminaires sur la structure de la patte du Seps tridactyle (Chalcides chalcides, L.). Bull. Soc. Hist. Nat., Toulouse 122, 109–111.Google Scholar
  57. Reig, O.A., 1963. La presencia de dinosaurios saurisquios en los “Estratos de Ischigualasto” (Mesotriasico superior) de las procvincias de San Juan y La Rioja (Republica Argentina). Ameghiniana 3, 3–20.Google Scholar
  58. Renous-Lecuru, S., 1973. Morphologie comparee du carpe chez les Lepidosauriens actuels (Rhynchocephales, Lacertilens, Amphisbeniens). Gegenbaurs Morphol. Jahrb., Leipzig 119, 727–766.Google Scholar
  59. Riddle, R.D., Johnson, R.L., et al., 1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416.PubMedCrossRefGoogle Scholar
  60. Schwarzbach, M., 1980. Alfred Wegener und die Drift der Kontinente. Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  61. Seichert, V., Rychter, Z., 1972. Vascularization of developing anterior limb of the chick embryo II. Differentiation of vascular bed and its significance for the location of morphogenetic processes inside the limb bud. Folia Morphol. (Warsz.) 19, 352–361.Google Scholar
  62. Sereno, P.C., 1993. Dinosaurian percursors from the Middle Triassic of Argentina:Lagerpeton chanarensis. J. Vert. Paleo. 13, 385–399.CrossRefGoogle Scholar
  63. Sereno, P., 1994. The pectoral girdle and forelimb of the basal theropodHerrerasaurus ischigualestensis. J. Vert. Paleont. 13 (4), 425–450.CrossRefGoogle Scholar
  64. Sereno, P.C., 1999a. The evolution of dinosaurs. Science 284, 2137–2147.PubMedCrossRefGoogle Scholar
  65. Sereno, P.C., 1999b. A rationale for dinosaurian taxonomy. J. Vert. Paleont. 19, 788–790.CrossRefGoogle Scholar
  66. Sereno, P.C., Novas, F.E., 1992. The complete skull and skeleton of an early dinosaur. Science 258, 1137–1140.PubMedCrossRefGoogle Scholar
  67. Sereno, P.C., Foster, C.A., et al., 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361, 64–66.CrossRefGoogle Scholar
  68. Sewertzoff, A.N., 1931. Studien über die Reduktion der Organe der Wirbeltiere. Zool. Jahrbuch; Abt.f. Anatomie, Jena 53, 611–699.Google Scholar
  69. Shubin, N.H., 1994. The phylogeny of development and the origin of homology. In: Grande, L., Rieppel, O. (Eds.), Interpreting the Hierarchy of Nature. Academic Press, San Diego.Google Scholar
  70. Shubin, N.H., Alberch, P., 1986. A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol. 20, 319–387.Google Scholar
  71. Steiner, H., 1934. Über die embryonale Hand- und Fuss-Skelettanlage bei den Crocodiliern, sowie über ihre Beziehung zur Vogel-Flügelanlage und zur ursprünglichen Tetrapoden-Extremität. Rev. Suisse Zool. 41, 383–396.Google Scholar
  72. Steiner, H., Anders, G., 1946. Zur Frage der Entstehung von Rudimenten. Die Reduktion der Gliedmassen vonChalcides tridactylus Laur. Rev. Suisse Zool. 53, 537–546.Google Scholar
  73. Swanson, A.B., Brown, K.S., 1962. Hereditary triphalangeal thumb. J. Heredity 53, 259–265.Google Scholar
  74. Vargas, A., Fallon, J.F., 2005. Birds have dinosaur wings: the molecular evidence. J. Exp. Zool. Part B (Mol. Dev. Evol.) 304B, 86–90.CrossRefGoogle Scholar
  75. Wagner, G.P., Gauthier, J.A., 1999. 1,2,3=2,3,4: A solution to the problem of the homology of the digits in the avian hand. PNAS 96, 5111–5116.PubMedCrossRefGoogle Scholar
  76. Wagner, G.P., Misof, B.Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.CrossRefGoogle Scholar
  77. Warm, A., Pietro, C.d., et al., 1988. Non-opposable triphalangeal thumb in an Italian family. J. Med. Genet. 25, 337–339.PubMedCrossRefGoogle Scholar
  78. Weiss, K.M., Fullterton, S.M., 2000. Phenotypic drift and the evolution of genotype-phenotype relationships. Theor. Pop. Biol. 57, 187–195.CrossRefGoogle Scholar
  79. Welscher, P.t., Zuniga, A., et al., 2002. Progression of vertebrate limb development through Shh-mediated counteraction of GLI3. Science 298, 287–830.CrossRefGoogle Scholar
  80. Welten, M.C.M., Verbeek, F.J., et al., 2005. Gene expression and digit homology in the chicken embryo wing. Evol. Dev. 7, 18–28.PubMedCrossRefGoogle Scholar
  81. Zschabitz, A., 1998. Glycoconjugate expression and cartilage development of the cranial skeleton. Acta Anat. 61, 254–274.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations