Advertisement

Folia Microbiologica

, Volume 39, Issue 5, pp 387–391 | Cite as

l-phenylalanine production by double auxotrophic multianalogue-resistant mutant ofArthrobacter globiformis

  • T. K. Maiti
  • S. P. Chatterjee
Article
  • 28 Downloads

Abstract

Tryptophan-plus-tyrosine double auxotrophic mutants resistant to fluorophenylalanine (PFP) and β-2-thienylalanine (TA) were isolated from a biotin-requiring glutamate-producingArthrobacter globiformis. The mutants were found to producel-phenylalanine in mineral salts medium. Further improvement ofl-phenylalanine production was achieved by isolation of mutants resistant to 5-methyltryptophan (MT) and 3-nitrotyrosine (NT) from a double auxotrophic PFPr and TAr mutant. Under optimal cultural condition one mutant yielded 9.6g phenylalanine per L medium in flask culture. Enzymic activity of regulatory enzymes (deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase and prephenate dehydratase) were observed in the wild type, double auxotroph and double-auxotrophic multianalogue-resistant mutant.

Keywords

Minimum Inhibitory Concentration Corynebacterium Glutamicum Bacillus Polymyxa Resistance Character Prephenate Dehydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi K., Shibai H., Hirose Y.: Effect of O2 supply onl-phenylalanine,l-proline,l-glutamine andl-arginine fermentation.J. Ferment. Technol. 57, 321–327 (1979).Google Scholar
  2. Alfoldi L.: La production induite de megacine en milieu synthetique.Ann. Inst. Pasteur. 94, 474–485 (1958).Google Scholar
  3. De Boer L., Dukhuizen L.: Microbial and enzymatic process forl-phenylalanine production.Adv. Biochem. Bioeng. Biotechnol. 41, 1–27 (1990).Google Scholar
  4. Calhown D.H., Jensen R.A.: Significance of altered carbon flow in aromatic amino acid synthesis: An approach to the isolation of regulatory mutants ofPseudomonas aeruginosa.J. Bacteriol. 109, 365–372 (1972).Google Scholar
  5. Choi Y.J., Tribe D.E.: Continuous production of phenylalanine using onE. coli regulatory mutant.Biotechnol. Lett. 4, 223–228 (1982).CrossRefGoogle Scholar
  6. Coats J.H., Nester E.W.: Regulation reversal mutation characterisation of end product activated mutants ofBacillus subtilis.J. Biol. Chem. 242, 4948–4955 (1957).Google Scholar
  7. Crosby G.A.: New sweetners.CRC Crit. Food Sci. 7, 297–323 (1976).Google Scholar
  8. Goto E., Ishiwara M., Sakurai S., Enei H., Takinami K.:l-Phenylalanine.Jap. Pat. Appl. (Kokai) 56-64793 (1974).Google Scholar
  9. Hagino H., Nakayama K.:l-Phenylalanine production by analogue resistant mutant ofCorynebacterium glutamicum.Agr. Biol. Chem. 38, 157–161 (1974a).Google Scholar
  10. Hagino H., Nakayama K.: DAHP synthase and its control inCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2125–2134 (1974b).Google Scholar
  11. Hagino H., Nakayama K.: Regulatory properties of prephenate dehydrogenase and prephenate dehydratase fromCorynebacterium glutamicum.Agr. Biol. Chem. 38, 2363–2367 (1974c).Google Scholar
  12. Hagino H., Nakayama K.: Regulatory properties of chorismate mutase fromCorynebacterium glutamicum.Agr. Biol. Chem. 39, 331–342 (1975).Google Scholar
  13. Hwang S.O., Gil G.H., Cho Y.J., Kang K.R., Lee J.H., Bae J.C.: The fermentation process forl-phenylalanine production using an auxotrophic regulatory mutant ofE. coli.Appl. Microbiol. Biotechnol. 22, 108–113 (1985).CrossRefGoogle Scholar
  14. Jones J.L., Fong W.S., Hall P., Comeita S.: Selected application of bioprocess for chemicals, acrylamide, vitamin C and phenylalanine, pp. 336–349 inThe Impact of Chemistry and Biotechnology. American Chemical Society, Washington 1988.Google Scholar
  15. Klausner A.: Building for success in phenylalanine.Biotechnology 3, 301–307 (1985).CrossRefGoogle Scholar
  16. Maiti T.K., Chatterjee S.P.: Microbial production ofl-phenylalanine: a review.Hind. Antib. Bull. 32, 3–26 (1990).Google Scholar
  17. Maiti T.K., Chatterjee S.P.: Production ofl-phenylalanine by double auxotrophic mutant ofA. globiformis: Optimization C+N source.Acta Biotechnol. 11, 241–254 (1991a).CrossRefGoogle Scholar
  18. Maiti T.K., Chatterjee S.P.:l-Phenylalanine production by double auxotroph mutant ofA. globiformis.Folia Microbiol. 36, 234–239 (1991b).Google Scholar
  19. Maiti T.K., Chatterjee S.P.: Phenylalanine production by double auxotrophic analogue resistant mutants ofA. globiformis.Acta Biotechnol. 13, 87–95 (1993).Google Scholar
  20. Maiti T.K.: Production ofl-phenylalanine by double auxotrophic mutants ofA. globiformis: Effect of temperature, trace salts and inoculum dose.Folia Microbiol. 38, 447–450 (1993).CrossRefGoogle Scholar
  21. Okumura S., Otsuka S., Yamanoi A., Yoshinaga F., Honda T., Kubota K., Tsuchida T.:l-Phenylalanine.US Pat. 3 600 235 (1972).Google Scholar
  22. Patel N., Piersen D.L., Jensen R.A.: Dual enzymatic routes ofl-tyrosine andl-phenylalaninevia pretyrosine inPseudomonas aeruginosa.J. Biol. Chem. 252, 5839–5846 (1977).PubMedGoogle Scholar
  23. Roy D.K., Chatterjee S.P.: Production of glutamic acid by anArthrobacter sp. I. Nutritional requirement in relation to glutamic acid production.Acta Microbiol. Polon. 3, 117–122 (1982).Google Scholar
  24. Shetty K., Crawford D.L., Pometto IIIA.L.: Production of phenylalanine from starch by analogue resistant mutants ofBacillus polymyxa.Appl. Environ. Microbiol. 52, 637–643 (1986).PubMedGoogle Scholar
  25. Shiio I.: Tryptophan, phenylalanine and tyrosine, pp. 188–206, in K. Aida, I. Chibata, K. Nakayama, K. Takinami, H. Yamada (Eds.):Biotechnology of Amino Acid Production. Kodansha Ltd., Tokyo and Elsevier Science Publ., Amsterdam (Progress in Industrial Microbiology, Vol. 24) 1986.Google Scholar
  26. Shiio I., Sugimoto S., Kawamura K.: Breeding of phenylalanine producingBrevibacterium flavum strains by removing feedback regulation of both the two key enzymes in its biosynthesis.Agr. Biol. Chem. 52, 2247–2253 (1988).Google Scholar
  27. Shiio I., Ishi K., Yokozeki K.: Production ofl-tryptophan by 5-fluoro-tryptophan resistant mutants ofBacillus subtilis.Agr. Biol. Chem. 37, 1991–2000 (1973).Google Scholar
  28. Srinivasan P.R., Sprinson D.B.: 2-Keto-3-deoxy-d-arabino-heptulosonate 7-phosphate synthase.J. Biol. Chem. 243, 716–722 (1959).Google Scholar
  29. Sugimoto S., Nakagawa M., Tsuchida T., Shiio I.: Regulation of aromatic amino acid biosynthesis and production of tyrosine and phenylalanine inBrevibacterium flavum.Agr. Biol. Chem. 37, 2327–2336 (1973).Google Scholar
  30. Suzuki M., Berglund A., Unden A., Heden C.G.: Aromatic amino acid production by analogue resistant mutants ofMethylomonas methanolophila GR.J. Ferment. Technol. 55, 466–475 (1977).Google Scholar
  31. Tokoro Y., Oshima K., Okii M., yamaguchi K., Tanaka K., Kinoshita S.: Microbial production ofl-phenylalanine fromn-alkanes.Agr. Biol. Chem. 34, 1516–1521 (1970).Google Scholar
  32. Tsuchida T., Kubota K., Morinaga Y., Matsui H., Enei H., Yoshinaga F.: Production ofl-phenylalanine byBrevibacterium lactofermentum 2256.Agr. Biol. Chem. 51, 2095–2101 (1987).Google Scholar
  33. Ueda Y., Yokomoto K.: Manufacture ofl-phenylalanine withCitrobacter freundricii. Japan Pat. 01.09.790 (1989).Google Scholar

Copyright information

© Folia Microbiologica 1994

Authors and Affiliations

  • T. K. Maiti
    • 1
  • S. P. Chatterjee
    • 1
  1. 1.Microbiology Laboratory, Department of BotanyBurdwan UniversityBurdwanIndia

Personalised recommendations